How Many Integer Solutions Exist for the Given Turkish Maths Olympiad Equation?

Click For Summary
SUMMARY

The equation x3 - y3 = 2y2 + 1 has exactly three integer solutions: (x, y) = (-2, -3), (1, 0), and (1, -2). The analysis involved substituting x = (y + a) and solving the resulting polynomial for integer values of a. The investigation showed that a = 1 yields two solutions, while a = 3 provides an additional integer solution. The conclusion confirms that the correct answer is B) 3.

PREREQUISITES
  • Understanding of polynomial equations and integer solutions
  • Familiarity with the concept of discriminants in quadratic equations
  • Basic algebraic manipulation and substitution techniques
  • Knowledge of real versus integer solutions in mathematics
NEXT STEPS
  • Study polynomial equations and their integer solutions
  • Learn about the discriminant and its role in determining the nature of solutions
  • Explore methods for solving inequalities involving polynomials
  • Investigate the implications of substituting variables in algebraic equations
USEFUL FOR

Mathematics students, educators, and enthusiasts interested in problem-solving techniques for algebraic equations and integer solutions.

özgürden
Messages
9
Reaction score
0
from my turkish maths olympiads book

original question
antalya matematik olimpiyatlarından said:
x^3 - y^3 = 2.(y)^2 + 1 denkleminin tamsayılarda kaç çözümü vardır?(verilen denklemi sağlayan tam sayı çözümlerini bulunuz)
A) 4 B) 3 C) 2 D) 1 E) Sonsuz çoklukta

in addition to.. link
http://www.akdeniz.edu.tr/fenedebiyat/math/olimpiyat/2006a.pdf
question 19
^=exponent


we are looking for integer solutions (x, y)
x^3 - y^3 = 2.(y)^2 + 1
Find how many integer solutions there are to given equation that satisfy the given condition.
 
Last edited by a moderator:
Mathematics news on Phys.org
incidentally ,choise 5 :E) Sonsuz çoklukta
meaning: infinite
 
The set of solutions is a superset of {(1, 0), (-2, -3)}, which shows that it's not D.
 
CRGreathouse said:
The set of solutions is a superset of {(1, 0), (-2, -3)}, which shows that it's not D.
Yes CRG, and there's one more solution, making answer B the correct one.

Here's my rough solution.

Let x=(y+a) for some integer "a".

Then x^3 - y^3 = 3a y^2 + 3a^2 y + a^3

3a y^2 + 3a^2 y + a^3 = 2y^2 + 1 implies that,

(3a-2) y^2 + 3a^2 y + a^3-1 = 0 *

We want integer solutions, but clearly there can be no integer solutions if there are no real solutions. So investigate this first.

Reals solutions to * imply that 9a^4 >= 4(3a-2)(a^3-1), which re-arranges to

9a^4 >= 12a^4 - 8a^3 - 12a + 8

3a^4 <= 8a^3 + 12a - 8

Since "a" must be integer we can solve the above inequality numerically or by trial and error and find that a = 1 or 2 or 3 are the only possible values that can give rise to real solutions to *.

Investigate a=1.

y^2 + 3y + 0 = 0 has solutions y=0 and y=-3, giving two solutions (x,y) = (1,0) and (-2,-3)

Investigate a=2

4y^2 + 12y + 7 = 0

D = 12^2 - 4*4*7 = 32, is not perfect square so there are no rational (and hence no integer) solutions.Investigate a=3

7y^2 + 27y + 26 = 0

D = 27^2 - 28*26 = 1, so there are rational and therefore perhaps integer solutions. Check.

y = (-27 +/- 1)/14, which gives one integer solution, y=-2 and hence (x,y) = (1,-2) is also part of the solution set.

Summary. There are 3 integer_pair solutions to the original equation. (x,y) = (-2,-3), (1,0) and (1,-2).
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K