Turn one vector into another vector

  • Context: High School 
  • Thread starter Thread starter askmathquestions
  • Start date Start date
  • Tags Tags
    Vector
Click For Summary

Discussion Overview

The discussion revolves around the problem of transforming one vector into another using a square matrix. Participants explore the mathematical formulation of this transformation, particularly in the context of 2x2 matrices, and discuss potential conditions and restrictions on the transformation matrix.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant poses a question about how to find a square matrix that transforms vector ##x## into vector ##y##, providing a specific example with 2x2 matrices.
  • Another participant reiterates the problem and derives equations for the transformation matrix components, noting that there are two equations with four unknowns.
  • Some participants suggest that additional conditions can be imposed on the transformation matrix, such as making it unitary or symmetric, or setting specific values for certain components.
  • One participant proposes an approach using polar coordinates to express the vectors and suggests that a rotation matrix followed by a scaling matrix could achieve the transformation.

Areas of Agreement / Disagreement

Participants express uncertainty about how to solve for the components of the transformation matrix and discuss various potential restrictions. There is no consensus on a specific method or set of conditions to apply.

Contextual Notes

Participants note the dependence on the chosen conditions for the transformation matrix and the implications of those choices on the solution space. There are unresolved mathematical steps regarding the determination of the matrix components.

askmathquestions
Messages
65
Reaction score
6
This might seem like a novice question, but let's suppose we have a vector ##x## and we want to turn it into vector ##y##. Well, what square matrix multiplied on ##x## accomplishes this?

As an example, let's work with a ##2 \times2## case:

##x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}## and ##y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}##, then what transform ##T = \begin{bmatrix} t_{1,1} & t_{1,2} \\ t_{2,1} & t_{2,2} \end{bmatrix}## makes the equation ##Tx = y## true?
 
Physics news on Phys.org
askmathquestions said:
This might seem like a novice question, but let's suppose we have a vector ##x## and we want to turn it into vector ##y##. Well, what square matrix multiplied on ##x## accomplishes this?

As an example, let's work with a ##2 \times2## case:

##x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}## and ##y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}##, then what transform ##T = \begin{bmatrix} t_{1,1} & t_{1,2} \\ t_{2,1} & t_{2,2} \end{bmatrix}## makes the equation ##Tx = y## true?
Well,
##\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}##

So
##y_1 = t_{11} x_1 + t_{12} x_2##

##y_2 = t_{21} x_2 + t_{22} x_2##

You have two equations in four unknowns so you can set some conditions on T if you like. But that's the proceedure.

-Dan
 
This is where I got stuck, because how do we solve for the ##t_{i,j}## components? Or, what conventional restrictions are there?
 
askmathquestions said:
This is where I got stuck, because how do we solve for the ##t_{i,j}## components? Or, what conventional restrictions are there?
You have two equations in four unknowns. So you can solve for two of the in terms of the remaining two unknowns. So you can set two more conditions.

There are a number of restrictions you can impose. You can set T to be unitary, det(T) = 1, Tr(T) = 0, you can make T symmetric or antisymmetric, skew-symmetric, etc. Or you could just simply say, "I want ##t_{11} = \pi## and ##t_{21} = 0##." As long as you don't run into a contradiction you can do just about anything you like. Of course you would want to tailor your conditions to whatever problem you are working with.

-Dan
 
  • Like
Likes   Reactions: Hall and malawi_glenn
One approach would be to express the vectors in polar form:
$$\vec v_1 = (x_1, x_2) = (r\cos \theta, r\sin \theta)$$$$\vec v_2 = (y_1, y_2) = (R\cos \phi, R\sin \phi)$$Then the rotation matrix for the angle ##\phi - \theta##, followed by the identity matrix multiplied by ##\frac R r## would do the trick.
 
  • Like
Likes   Reactions: topsquark

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K