Turning Moment of Single Cylinder 4-Stroke Engine | Explanation

Click For Summary
The discussion centers on the turning moment diagram of a single-cylinder four-stroke engine, specifically how positive torque is generated at the end of the suction and exhaust strokes. The net force acting on the piston must be positive for it to move, which occurs during the expansion stroke, leading to torque development at the crankshaft. The momentum of gas flow in the inlet and exhaust ports contributes to this positive torque, as the induction stroke creates an over-pressure and the exhaust stroke generates a partial vacuum. Proper tuning of the inlet and exhaust ports enhances this momentum effect, resulting in increased engine power and improved gas exchange. Understanding these dynamics is crucial for optimizing engine performance.
Athi Sankar
Messages
8
Reaction score
2
TL;DR
Theoretical turning moment diagram for an four stroke engine has the positive turning moment at the end of suction and exhaust stroke.
1568400019961.png
1568400100588.png



Figure 1 shows the Turning Moment diagram of Single Cylinder four stroke Engine. Can anyone tell me, how the turning moment becomes positive at the end of suction and exhaust stroke.

Net force F = Force due to gas pressure - Inertia Force - Reaction Force due to friction

If the net force acting on the piston (F in fig (2) ) becomes positive then only the piston moves towards right side. e(i.e) During expansion stroke the torque will be developed at the crank shaft. Excess Energy stored in flywheel. This excess energy releases whenever the torque is negative to maintain constant output. But as per the fig (1) at the end of suction stroke there is some positive torque can you say the reason?
 
Engineering news on Phys.org
I believe you are seeing the momentum of the gas flow in the inlet and exhaust ports.

The induction stroke starts out drawing air through the inlet port into the cylinder. The velocity rises at first but when the piston slows down there is an over-pressure due to the momentum of the induced air.

During the exhaust stroke the gasses accelerate into and along the exhaust port. As the piston slows down, there is a partial vacuum drawn due to momentum of the escaping exhaust gasses.

By tuning the inlet and exhaust ports the momentum effect can be enhanced to draw in more air and to expel more exhaust. That gives more engine power and less mixing of exhaust and inlet gasses.
 
  • Like
Likes Athi Sankar
Thank you
 
https://newatlas.com/technology/abenics-versatile-active-ball-joint-gear/ They say this could be used as a shoulder joint for robots. Mind boggling! I'm amazed this has been done in real life. The model they show seems impractical to me. The ball spins in place but doesn't connect to anything. I guess what they would do would be attach a shaft to that ball, then restrict the motion so the drive gears don't contact the shaft. The ball would have two limited degrees of freedom then a...

Similar threads

Replies
11
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 45 ·
2
Replies
45
Views
5K
  • · Replies 35 ·
2
Replies
35
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
8
Views
14K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
6K