ehild
Science Advisor
Homework Helper
- 15,536
- 1,917
Returning to your energy consideration, and assuming the CM is in rest: If you have two masses with coordinates x1 and x2 corresponding velocities v1 and v2, and you introduce the variable x=x2-x1, the corresponding velocity v=v2-v1:
CM is in rest: m1v1+m2v2=0, and v2-v1=v →
##v_1=-\frac{m_2v}{m_1+m_2}\\v_2=\frac{m_1v}{m_1+m_2}##
The kinetic energy is
##KE=\frac{1}{2} \left(m_1 (\frac{m_2 v}{m_1+m_2} )^2+ m_2( \frac{m_1 v}{m_1+m_2})^2 \right)##
##KE=\frac{1}{2}\frac{m_1 m_2}{m_1+m_2} v^2=\frac{1}{2} μ v^2##
Assuming SHM about the equilibrium value of x: x-xe=Asin(ωt), v=Aωsin(ωt) and expanding the potential energy about xe: PE=0.5 D(x-xe)2
KE+PE=E →
##\frac{1}{2} A^2\left((μω)^2\cos^2(ωt)+D^2 \sin^2(ωt)\right)=E##
The expression can be constant only when μω=D.
CM is in rest: m1v1+m2v2=0, and v2-v1=v →
##v_1=-\frac{m_2v}{m_1+m_2}\\v_2=\frac{m_1v}{m_1+m_2}##
The kinetic energy is
##KE=\frac{1}{2} \left(m_1 (\frac{m_2 v}{m_1+m_2} )^2+ m_2( \frac{m_1 v}{m_1+m_2})^2 \right)##
##KE=\frac{1}{2}\frac{m_1 m_2}{m_1+m_2} v^2=\frac{1}{2} μ v^2##
Assuming SHM about the equilibrium value of x: x-xe=Asin(ωt), v=Aωsin(ωt) and expanding the potential energy about xe: PE=0.5 D(x-xe)2
KE+PE=E →
##\frac{1}{2} A^2\left((μω)^2\cos^2(ωt)+D^2 \sin^2(ωt)\right)=E##
The expression can be constant only when μω=D.