Uncertainty with a simple pendulum

Click For Summary
SUMMARY

The discussion focuses on calculating the acceleration due to gravity (g) using a simple pendulum, with the formula T=2π√(L/g). The measured period T is 1.24 ± 0.02 s and the length L is 0.381 ± 0.002 m. Participants detail the process of isolating g and calculating both absolute and relative uncertainties, ultimately arriving at a calculated value of g as 9.78 ± 0.04 m/s², with a relative uncertainty of 4%. Discrepancies in results are attributed to different values of π used in calculations.

PREREQUISITES
  • Understanding of pendulum mechanics and the formula T=2π√(L/g)
  • Basic knowledge of uncertainty calculation methods
  • Familiarity with percentage error and its application in measurements
  • Proficiency in using scientific calculators for precise calculations
NEXT STEPS
  • Study the principles of uncertainty propagation in measurements
  • Learn about the impact of significant figures on experimental results
  • Explore advanced pendulum experiments to measure gravitational acceleration
  • Investigate the effects of varying values of π in scientific calculations
USEFUL FOR

Students in physics, educators teaching mechanics, and anyone interested in experimental physics and precision measurement techniques.

aborder
Messages
14
Reaction score
0
A simple pendulum is used to measure the acceleration of gravity using T=2pi(sqrt(L/g)) . The period T was measured to be 1.24 ± 0.02 s and the length L to be 0.381 ± 0.002 m. What is the resulting value for g with its absolute and relative uncertainty?

So the first thing I did was to isolate g. But to actually calculate the uncertainty, I am completely lost here. I am using the book "Experimentation" by D.C. Baird and nothing is making sense here. Most likely it talks about it in the book, but I am having a hard time understanding this. If someone could explain how to calculate uncertainty for this, it would probably help. Thanks.
 
Physics news on Phys.org
aborder said:
A simple pendulum is used to measure the acceleration of gravity using T=2pi(sqrt(L/g)) . The period T was measured to be 1.24 ± 0.02 s and the length L to be 0.381 ± 0.002 m. What is the resulting value for g with its absolute and relative uncertainty?

So the first thing I did was to isolate g. But to actually calculate the uncertainty, I am completely lost here. I am using the book "Experimentation" by D.C. Baird and nothing is making sense here. Most likely it talks about it in the book, but I am having a hard time understanding this. If someone could explain how to calculate uncertainty for this, it would probably help. Thanks.


Once transformed, you will have found g proportional to L/T2

to find the absolute largest value, you want to multiply by as much as possible, and divide by as little as possible.
So you will sub the upper limit of L, and the lower limit of T to get the largest possible g

To get the lowest possible g, use smallest L and largest T.

You will already have calculated the expected g, you can thus work out the absolute uncertainty.

For relative error [is that percentage error?] you would multiply the percentage error in L by the square of the percentage error in T.
 
That makes sense to divide by the highest and multiply by the lowest to get the low end and vice versa. Using the method you described, I got 9.79 +/- 0.184. The answer in the book gives 9.77 +/-0.04 with a relative uncertainty of 0.4%.

The relative uncertainty is given by this:

Relative uncertainty = Absolute Uncertainty / Measured Value
 
aborder said:
That makes sense to divide by the highest and multiply by the lowest to get the low end and vice versa. Using the method you described, I got 9.79 +/- 0.184. The answer in the book gives 9.77 +/-0.04 with a relative uncertainty of 0.4%.

The relative uncertainty is given by this:

Relative uncertainty = Absolute Uncertainty / Measured Value

Firstly, my error. I should have said you add the percentage errors not multiply them - haven't used percentage errors for a while.

Period T 1.24 +-0.02 means an error of 2 in 124 = 1.6%
Length L = 0.381 +- 0.004 means an error of 4 in 381 = 1.05%

So total error = 1.6 + 1.6 + 1.05 = 4.25%

so 9.78 +- 4% or 9.78 +- .04


I [almost]agree with your numbers, and would express it as 9.78 +- 0.04 or 9.78 +- 4%
I wonder if you mis-read the book and they actually had +- 4% not +- 0.4%

Note: I can only get your 9.79 if I assume pi = 22/7. I can only get their 9.77 if I assume pi = 3.14. Given that my calculator gives pi to about 10 decimal places, I used them all to get 9.78.
 
PeterO said:
Firstly, my error. I should have said you add the percentage errors not multiply them - haven't used percentage errors for a while.

Period T 1.24 +-0.02 means an error of 2 in 124 = 1.6%
Length L = 0.381 +- 0.004 means an error of 4 in 381 = 1.05%

So total error = 1.6 + 1.6 + 1.05 = 4.25%

so 9.78 +- 4% or 9.78 +- .04


I [almost]agree with your numbers, and would express it as 9.78 +- 0.04 or 9.78 +- 4%
I wonder if you mis-read the book and they actually had +- 4% not +- 0.4%

Note: I can only get your 9.79 if I assume pi = 22/7. I can only get their 9.77 if I assume pi = 3.14. Given that my calculator gives pi to about 10 decimal places, I used them all to get 9.78.


No, I wish I did mis-read it. The value is +/- 0.4%. I asked my instructor last night and he didn't give me a reply. He wasn't at school today either. When I get an answer, I'll post it. Thanks for the help.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
Replies
17
Views
1K
Replies
6
Views
998
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K