here, maybe I should add some more context to my question. I was reading the second edition of "Radio Engineering" by Terman (it is rather ancient), and for AM radio he modifies the equation: E=Eo + mEosin2[pi](fs)t, in which E is the amplitude at a given time, Eo is the average amplitude, fs is the frequency of the signal, if it were a sine wave(not the source wave, but the frequency of the signal should it happen to be sinusoidal). M is a ratio that he says represents the average amplitude relative to the average variation from the average. He then uses some trig identities to show how E equals three trigonometric expressions added together. He calls one the carrier wave (This one has no fs, which he uses to show that the carrier always has the same amplitude). The other two waves are similar mathematical expressions that depend on the difference and sum between the signal frequency and the source frequency.
So I am trying to understand what is happening here on a more theoretical level- Why exactly is the carrier wave needed? Like, I see that it has to occur, but I suppose I am getting caught when I try to think about how exactly it is used- if I picked a given frequency to tune my receiver to (assume AM), then why not just receive some modulated waves? why is the constant carrier wave important? Is it just so that it can get "subtracted out" [terrible word choice, I'm thinking in terms of graph shifts] of the modulated wave so all that one ends up with is the signal variation and not the source waves?
As you can tell, I am sort of a newbie, so my apologies if some of this post was incoherent. Thank you for your help!