Understanding Null Space and Column Space of a Matrix

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on understanding the null space (Nul A) and column space (Col A) of the matrix A, defined as A = [[1, 5, -4, -3, 1], [0, 1, -2, 1, 0], [0, 0, 0, 0, 0]]. The null space consists of all vectors x in R5 such that A*x = 0, representing the solution space of the homogeneous system. The column space includes all vectors y in R3 that can be expressed as A*x for some x in R5, which is the linear span of the columns of A. Understanding these concepts is crucial for solving related linear algebra problems.

PREREQUISITES
  • Linear algebra fundamentals
  • Matrix operations and properties
  • Understanding of vector spaces
  • Knowledge of row echelon form
NEXT STEPS
  • Study the definitions and properties of null space and column space in linear algebra
  • Learn how to compute the null space of a matrix using Gaussian elimination
  • Explore the concept of linear independence and its relation to column space
  • Practice solving homogeneous systems of equations
USEFUL FOR

Students of linear algebra, educators teaching matrix theory, and anyone seeking to deepen their understanding of vector spaces and matrix properties.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{311.q.02.05}\\$
Let
$A=\begin{bmatrix}
1 & 5 & -4 & -3 & 1 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},
u=\begin{bmatrix}
7\\ 0\\ 1 \\ 2 \\ 3
\end{bmatrix}
and \,
v=\begin{bmatrix} 3\\ 5\\ 0 \end{bmatrix}$
$\textsf{(a) Find Nul} \textbf{A} $
$\textsf{(b) Find Col} \textbf{A} $ok basically clueless, wasn't there for lecture
 
Last edited:
Physics news on Phys.org
You probably have a book or lecture notes?
What are the definitions of $\operatorname{Nul}{A}$ and $\operatorname{Col}{A}$ they give there? (These definitions should not involve $u$ nor $v$.)
 
Krylov said:
You probably have a book or lecture notes?
What are the definitions of $\operatorname{Nul}{A}$ and $\operatorname{Col}{A}$ they give there? (These definitions should not involve $u$ nor $v$.)

this was on a practice quiz
not from the text. this is all that was said.
 
karush said:
this was on a practice quiz
not from the text. this is all that was said.

That seems a little strange. There must be a place where your teacher (or the book he is using) has defined $\operatorname{Nul}{A}$ and $\operatorname{Col}{A}$. I strongly recommend that you look it up yourself and compare with the following:

$\operatorname{Nul}{A}$ abbreviates the nullspace of $A$. Assuming you work with real numbers, for this particular matrix it is the set of all vectors $\mathbf{x}$ in $\mathbb{R}^5$ such that $A\mathbf{x} = 0$. So, finding $\operatorname{Nul}{A}$ is equivalent to finding the solution space of the homogeneous system corresponding to $A$. Do you understand this?

On the other hand, $\operatorname{Col}{A}$ abbreviates the column space of $A$. In this example it is the set of all $\mathbf{y} \in \mathbb{R}^3$ such that $A\mathbf{x} = \mathbf{y}$ for some $\mathbf{x} \in \mathbb{R}^5$. So, $\operatorname{Col}{A}$ is the linear span of the columns of $A$. Are all the columns needed? How can you find out which ones are? (For this, note that $A$ is already in row echelon form.)
 
I'm sorry for answering. Indeed, if the OP does not want to make any effort, then why should I?

Please just look up what $\operatorname{Nul}{A}$ and $\operatorname{Col}{A}$ mean, make sure that you understand the definition precisely, and do the exercise.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K