I Understanding Physical Processes: EM, Gravitational, Mechanical & Entropic

AI Thread Summary
The discussion explores the applicability of electromagnetic, gravitational, mechanical, and entropic processes to all physical phenomena. It questions whether electromagnetic interactions are possible within black holes, suggesting that not all physical entities interact electromagnetically. The conversation also examines gravitational forces, noting that while all mass-energy entities exert gravitational influence, distant galaxies may not be affected by the same gravitational fields. Regarding mechanics, it is posited that all physical interactions can be described mechanically, implying a potential equivalence between physicality and mechanical laws. Lastly, the discussion asserts that entropy seems to govern all physical processes, linking it closely with information theory, while also considering the limitations of these interactions in the context of cosmic expansion.
Hallucinogen
Messages
37
Reaction score
0
Hi, I'm putting together some resources about theories and would like some help to make sure I don't make a mistake.

In particular, I'd like to know if each of the electromagnetic, gravitational, mechanical and entropic processes applies to every physical process.

So, for example, due to an event horizon, I understand that electromagnetic radiation cannot escape the interior of a black hole (hence I'm not referring to Hawking radiation), so therefore is it true not that all physical phenomena/bodies are interacting electromagnetically? The EM forces cannot take the matter inside the black hole and interact it with matter outside it, so there's a set of phenomena that can't be electromagnetic. If so, this would entail that not everything that is physical is electromagnetic, is that right?

I also have the same question about gravitaitonal forces and mechanical forces. Regarding gravitation: is it right that any two things that have energy/mass exert a gravitational force of some size on each other, so is there no entity in physics unaffected by gravitaitonal force? I read that very distant galaxies might not be encompassed by the same gravitaitonal field, is that right?

And for mechanics. I can't think of an example of any physical object or interaction or process that isn't governed by some mechanical description or law. If that's right, does it mean everything that is physical is mechanical, and vice versa? Ie. they are sets with the same elements?

This also seems true of entropy. Any physical process between physical entities appears to be considerable as an entropic process, so it seems to me that entropy covers the whole set of physical processes, is this right? Every known interaction in physics can be expressed in terms of entropic laws, correct?

While this is also true of information theory, information arguably includes more than physical things. There appears to be a close relationship between information theory and entropy, but the subject of entropy appears to specifically be the informational consideration of physical phenomena, ie. it seeks to understand the link between information, matter and energy. Is entropy circumscribed as such?

Many thanks for any help.
 
Last edited:
Physics news on Phys.org
Or, for example, two galaxies that have exited each other's light cones and are accelerating away from one another faster than the speed of light due to cosmic expansion no longer have any interaction with one another that can be expressed in terms of EM or gravitation. Is that right?
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top