MHB Understanding Squaring the Bottom of an Equation

  • Thread starter Thread starter Petrus
  • Start date Start date
AI Thread Summary
The discussion focuses on the mathematical concept of squaring the bottom of an equation, specifically in the context of logarithmic properties. The user initially questions why the bottom is squared when dealing with negative values, such as -2. The explanation provided clarifies that the transformation follows the rule of logarithms, where -2 ln|x + 1/2| equates to ln(1/(x + 1/2)²). The conversation concludes with the user expressing understanding of the exponent law applied in this context. Overall, the thread emphasizes the importance of logarithmic identities in simplifying expressions.
Petrus
Messages
702
Reaction score
0
Hello MHB,
I have problem understanding the last part, why do they square the bottom?
j5b5z9.png


Is it because we got -2? if we would have -3 would we take the bottom $$(bottom)^3$$?
I am aware that $$\ln|f(x)|- \ln|g(x)|= \ln\frac{f(x)}{g(x)}$$

Regards,
$$|\pi\rangle$$
 
Mathematics news on Phys.org
Petrus said:
Hello MHB,
I have problem understanding the last part, why do they square the bottom?
j5b5z9.png


Is it because we got -2? if we would have -3 would we take the bottom $$(bottom)^3$$?
I am aware that $$\ln|f(x)|- \ln|g(x)|= \ln\frac{f(x)}{g(x)}$$

Regards,
$$|\pi\rangle$$

Simply is...

$$- 2\ \ln |x+\frac{1}{2}| = \ln \frac{1}{|x+\frac{1}{2}|^{2}} = \ln \frac{1}{(x+\frac{1}{2})^{2}}$$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Simply is...

$$- 2\ \ln |x+\frac{1}{2}| = \ln \frac{1}{|x+\frac{1}{2}|^{2}} = \ln \frac{1}{(x+\frac{1}{2})^{2}}$$

Kind regards

$\chi$ $\sigma$
Ohh now I see. We use this rule.
ea0d010db0bb2795fe2a83ea998cbd9c.png

right?

Regards,
$$|\pi\rangle$$
 
Petrus said:
Ohh now I see. We use this rule.
ea0d010db0bb2795fe2a83ea998cbd9c.png

right?

Regards,
$$|\pi\rangle$$

Right.

It also uses the exponent law $a^{-b} = \dfrac{1}{a^b}$
 
Thanks for the fast responed and help from you both!:)Now I understand!:)

Regards,
$$|\pi\rangle$$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
3
Views
2K
Replies
2
Views
2K
Replies
4
Views
2K
Replies
3
Views
2K
Replies
7
Views
3K
Replies
5
Views
3K
Replies
2
Views
1K
Back
Top