Understanding the Doppler Effect: Solving the Bat Problem

AI Thread Summary
The discussion centers on solving a Doppler effect problem involving a bat and an insect. The bat is first treated as the sound source, emitting a 40.0-kHz chirp, and then as the observer receiving a 40.4 kHz echo. The key confusion arises from why both frequencies are set to the reflected wave in the second step. It's clarified that the first step calculates the frequency observed by the insect, which then acts as the source frequency for the bat's observation. Correctly distinguishing between the observed frequency and the source frequency is crucial for accurate calculations in this two-stage process.
physicsfan999
Messages
1
Reaction score
0
Homework Statement
A bat flying at 4.10 m/s is chasing an insect flying in the same direction. The bat emits a 40.0-kHz chirp and receives back an echo at 40.4 kHz. (Take the speed of sound in air to be 340 m/s.)
Relevant Equations
f_o=f_s(v+v_o/v-v_s)
I'm struggling a lot with this problem on the Doppler effect. I understand the first step which is to treat the bat as the source of the emitted sound, giving

1614718292037.png


And the second to treat the bat now as the observer, but instead of using f_b on the left the solution involves setting both frequencies to the reflected wave.
1614718268174.png

I understand there should 2 different variables here for the equation to make sense but I need help understanding why the second step involves setting the two frequencies the same. Thanks in advance!
 
Physics news on Phys.org
physicsfan999 said:
Homework Statement:: A bat flying at 4.10 m/s is chasing an insect flying in the same direction. The bat emits a 40.0-kHz chirp and receives back an echo at 40.4 kHz. (Take the speed of sound in air to be 340 m/s.)
Relevant Equations:: f_o=f_s(v+v_o/v-v_s)

I'm struggling a lot with this problem on the Doppler effect. I understand the first step which is to treat the bat as the source of the emitted sound, giving

View attachment 279012

And the second to treat the bat now as the observer, but instead of using f_b on the left the solution involves setting both frequencies to the reflected wave.
View attachment 279011
I understand there should 2 different variables here for the equation to make sense but I need help understanding why the second step involves setting the two frequencies the same. Thanks in advance!
As you correctly say, this is a 2-stage process. In stage-1 we find the observed frequency (##f_i##) with the insect as the observer). In stage-2 we treat ##f_i## as the source frequency because this is the frequency of the reflected signal sent from the insect to the bat.

Your final equation$$f_i = f_i (\frac {343 + v_b}{343 + v_i})$$is wrong. You need to give the final observed frequency (by the bat) a different symbol:$$f_{observed-by-bat} = f_i (\frac {343 + v_b}{343 + v_i})$$Can I suggest you watch this:
Edit - typo' corrected.
 
  • Like
Likes collinsmark, Doc Al and rsk
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top