What is Doppler effect: Definition and 504 Discussions

The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who described the phenomenon in 1842.
A common example of Doppler shift is the change of pitch heard when a vehicle sounding a horn approaches and recedes from an observer. Compared to the emitted frequency, the received frequency is higher during the approach, identical at the instant of passing by, and lower during the recession.The reason for the Doppler effect is that when the source of the waves is moving towards the observer, each successive wave crest is emitted from a position closer to the observer than the crest of the previous wave. Therefore, each wave takes slightly less time to reach the observer than the previous wave. Hence, the time between the arrivals of successive wave crests at the observer is reduced, causing an increase in the frequency. While they are traveling, the distance between successive wave fronts is reduced, so the waves "bunch together". Conversely, if the source of waves is moving away from the observer, each wave is emitted from a position farther from the observer than the previous wave, so the arrival time between successive waves is increased, reducing the frequency. The distance between successive wave fronts is then increased, so the waves "spread out".
For waves that propagate in a medium, such as sound waves, the velocity of the observer and of the source are relative to the medium in which the waves are transmitted. The total Doppler effect may therefore result from motion of the source, motion of the observer, or motion of the medium. Each of these effects is analyzed separately. For waves which do not require a medium, such as electromagnetic waves or gravitational waves, only the relative difference in velocity between the observer and the source needs to be considered, giving rise to the relativistic Doppler effect.

View More On Wikipedia.org
  1. C

    Moving Source, Observer at Rest, derivation for Doppler effect

    For this, Does someone please know whether they assume for the equation highlighted that ##\frac{v}{f} ≥ \frac{v_S}{f}## since otherwise the wavelength would be negative (which I assume is impossible)? Many thanks!
  2. M

    Doppler effect sound samples

    Hi, I am looking for some sound clip examples of the doppler effect for some specific questions. Specifically I would like to find a single tone/horn recorded in the three different ways: 1. Not moving at all 2. Moving past the recorder at a slower speed 3. Moving past the recorder at a higher...
  3. orangephysik

    Doppler effect and acceleration of source

    Hi. I need help with part a). I calculated the wavelength of the source by using the formula f_0 = v_phasefront / λ and got λ = (343 m/s) / (520 Hz) = 0.6596 m. And then I set up an equation for the velocity of the source v(t) = a*t (with v(t = 0 )= 0 m/s) and s(t) = 1/2 * at^2 + s_0. But I...
  4. Alia_3

    A Understanding 3D Doppler Shift with Satellites

    I am trying to understand a case of doppler shift if I have two satellite circling the earth with different velocities but the same direction and with different altitudes as well. How I will be able to figure out the doppler shift in three dimension between the two satellite if one of the...
  5. inspacewithcallisto

    B Highschool Student Struggling to Understand Doppler Effect Paper

    I'm a highschool student learning about astrophysics, and I'm trying to understand this paper by Dr. Sophia Cisneros because I find it interesting and I want to do an informational interview. The problem is, I just have really bad reading comprehension, especially with all the scientific jargon...
  6. A

    B Understanding the Doppler Effect at an Angle

    hello everyone How is the sound Doppler effect formula in the case where the movement of the source and the observer is at an angle?
  7. A

    B Doppler effect on electromagnetic waves in a car

    Is the doppler effect on electromagnetic waves receive by cell phone in fast car and so somebody talk with cell phone in fast car view this effect
  8. C

    I Doppler effect and frequency

    Hello everyone! I'm watching a Walter Lewin lecture and it seems to me at least that he is dividing maximum frequency of the sound by sound frequency of the transmitter to derive velocity of the transmitter, does this work? It seems that quantity would be dimensionless and velocity obviously...
  9. X

    I Formula for Doppler effect in moving medium?

    Hi, I know the usual formula for both moving source and receiver in a static medium (from wiki): Is ir correct? What about when the medium is moving too? I can't seem to find an answer, and worst, I'm finding contradicting ones. For example, when the source and the receiver are moving at the...
  10. mohamed_a

    I Acoustic wave properties and momentum

    I have read about doppler effect in acoustics so i searched for the relation ship between wavelength of wave produced by linear movement of body and its momentum along with other dependent variables such as density of fluid (leaving acoustics for a second) and temperature but souldn't find a...
  11. A

    I Deriving Doppler Effect Frequency w/ Stationary Person & Moving Source

    Can you derive the formula for frequency observed from doppler effect with stationary person and moving sound source away from the person like this: ##v_t = v + v_s## where ##v_t## is the total velocity observed by stationary person from moving sound, v is velocity of sound and ##v_s## is...
  12. Amaterasu21

    I Energy conservation in Doppler (NOT cosmological) redshifts?

    Hi all, My question is about Doppler redshifts, but I'm going to mention cosmological redshifts first because I'm a lay person as far as cosmology's concerned (I'm an amateur astronomer and did a few introductory astrophysics/cosmology courses at university, but my degree focus was planetary...
  13. dom_quixote

    B The Colors of The Moon (Doppler Effect)

    Hey guys! I will pass an illustrated problem, below. - We know that the solar rays that reach the Moon and Earth are practically parallel; - We know that the lunar orbit with respect to Earth lasts 27.322 days or 2,360,621 seconds; - We know that the lunar orbit with respect to the Earth is...
  14. BadgerBadger92

    I Time Dilation vs. Doppler Effect: Similarities & Differences

    Does time dilation in Special Relativity relate to the Doppler effect? If you move near the speed of light you experience time differently and the sound is stretched. Are these similar phenomenon?
  15. A

    I Relativistic Doppler Effect near a Black Hole

    Hey everyone, if I were to view a shining person rotating near a black hole at near the speed of light there would be 2 kinds of redshifts: gravitational redshift and relativistic doppler effect redshift. Right? But, say at some point, the person is traveling towards me, then the doppler effect...
  16. Kairos

    I Sound and apparent wind -- Any Doppler effect?

    If two cars are driving side by side at the same speed, their relative speed is zero but do they nonetheless perceive a sound Doppler effect from the other car's siren because of the apparent headwind generated by their speed?
  17. F

    A How Does the Anomalous Doppler Effect Work?

    From what I understand, the anomalous Doppler effect can occur when a charged particle moves through a medium faster than light would move through that medium; however in the paper, The Doppler Effect in a Warm Uniaxial Plasma, it mentions that this effect can occur when a dipole moves faster...
  18. H

    The relativistic Doppler effect

    I found the observed frequency from the energy. Then I used the receding Doppler shift formula to find, the source frequency but after that when i tried to use the Rydberg equation I got a value for the energy level less than one. and I'm pretty sure my work is right, any help is greatly...
  19. X

    B Doppler effect in moving medium?

    Hi there, here's the problem: There's a sound, with a certain frequency coming, from a source. Both the listener and the source are fixed in a inertial reference frame. But there's wind blowing from the source to the listener. Now, this situation isn't the same as the listener chasing the...
  20. P

    Doppler Effect -- Bat Problem

    I'm struggling a lot with this problem on the Doppler effect. I understand the first step which is to treat the bat as the source of the emitted sound, giving And the second to treat the bat now as the observer, but instead of using f_b on the left the solution involves setting both...
  21. M

    I Doppler effect - can't imagine how the frequency of light can change

    AM/FM radio stations, cell phone towers transmit signals at certain frequencies. How can the frequency of a signal change depedning on whether the receiver is moving towards or away from the source? I thought that the frequency of an electromagnatic wave is determined at the source (the energy...
  22. R

    Doppler effect in Special relativity -- Solution verification

    I am assuming that B is a stationary observer here. For the first part of the trip, using the formula, rocket A is approaching B at velocity $$v_A$$ =0.6 c. The length that A travels is $$L_A = v_A t_1 $$ where $$t_1 = $$ 6 hrs. For the first part of the trip, B is receiving signals at a rate...
  23. HalJordan2814

    How fast is the star moving? (Doppler effect)

    A type of star that usually emits light at a frequency of 6.00 × 10^14 Hz appears to emit light at a frequency of 6.01 × 10^14 Hz. Calculate how fast the star is moving, and if it moving towards us or away from us.
  24. J

    I Doppler Shift of Photons

    I'm trying to understand the Energy-Momentum relativistic relationships for a light particles. It is commonly said that the Energy of a photon depends on the observer by the relationship ## E = - \mathbf{p} \cdot \mathbf{u}## where p is the 4-momentum of the source emitting light particles and u...
  25. Kairos

    I Velocity Addition and Doppler Effect: Explained

    The Doppler effect of light corresponds to the classical Doppler effect corrected by time dilation, but the first one is obtained with classical velocity additions (c+v at the front of the source and c-v at the back) whereas velocity addition of special relativity gives c at the front and c at...
  26. K

    Doppler effect and beat frequency

    Summary:: Two speakers A and B are at rest, and a listener L stays on the line that connects the two speakers (see picture). The speakers have almost the same frequency. Assume that the speed of sound in air is 340 m/s. When the listener is at rest, he/she hears beats with frequency 6 Hz. The...
  27. E

    Find the altitude and the speed of two jets with Doppler Effect

    Being honest, I couldn't do any works for this problem... (even couldn't start...) Does anyone can help me for solving this...? Thank you!
  28. aspodkfpo

    Doppler effect and hydrogen alpha distributions

    https://www.asi.edu.au/wp-content/uploads/2015/03/PhysicsASOE2014solutions.pdf q 14b) i) Assuming that the planet is rotating at a constant rate, shouldn't the distribution be even across all wavelengths, or do I have something very wrong with my model. I take the graph as the summation of...
  29. LCSphysicist

    Changing of frequencies in the Doppler effect

    I am trying to figure out why the relativity don't get in the doppler effect, that is, why can't we apply the "galileo transformations" in doppler effect? OBS: i am not saying about doppler effect relativistic (using Lorentz transformation) In another words, i am moving in direction to a source...
  30. E

    B Doppler effect convention

    If the source is at ##(t,0)## in ##S## and the receiver is at ##(t',0)## in ##S'## which moves at ##\beta_x## w.r.t. ##S##, then by considering two crests at ##(0,0)## and ##(T_s, 0)## in the source frame ##S## and transforming these events into ##S'## we can derive that ##\lambda_{r} =...
  31. O

    Doppler effect - two airplanes flying towards each other

    I found it confusing since there is only "mutual" speed of both aircrafts and hence I do not know how to correctly put it into the common Dopplers formula...
  32. R

    Doppler effect and how it affects the light spectrum

    Looking for a beginners explanation to the following question: How is Doppler effect separated from the original spectrum of light emanating from a moving body (in astronomy or other physics branches)? If the question does not make sense, here is the reasoning to ask it: If a certain color is...
  33. stephenklein

    Deriving the Relativistic Transverse Doppler Effect (Circular Motion)

    **I realize some of my inline math delimiters '\(' and '\)' are not acting on the text for some reason, and it looks clunky. I spend 20-30 minutes trying to understand why this is, but I can't. My limited LaTeX experience is in Overleaf, and these delimiters work fine in that compiler. My...
  34. greg_rack

    How to link frequency and speed? Doppler effect

    I had many attempts on trying to solve this one, but I got always stuck in the problem-solving part: how do I manage to find the source-speed from the Doppler formula, in an analytical way, and then reach to the result-formula? Anyway, I'm pretty sure the only formula needed to solve this...
  35. N

    B Some questions about the Doppler Effect at high velocities

    Hey all. Question 1: Let's say we start with a red wavelength photon, that is absorbed by an atom and raises the atom to an excited state. The atom is then accelerated. After reaching a high velocity (say 0.1c), the photon is emitted. I would have thought that the energy of the emitted photon...
  36. George Keeling

    I Have I got the right picture for cosmological redshift?

    Summary: I have a question on cosmological redshift which I have just learned about from Sean Carroll. After calculating it for an expanding universe he does a thought experiment to show that it is different to Doppler redshift which would be detected if two galaxies were flying away from each...
  37. frostysh

    B Help with understanding the Doppler effect

    My answer on this question for now is that producing a waves in the medium is an event which is basically must be invariant in the any of frame of references. For an example: a brick is freely falling, then the brick suddenly splinted into two pieces — no matter from which frame will we observe...
  38. J

    Doppler Effect Problem

    Pretending the siren is at rest in air: Wavelength = velocity/frequence --> (343 m/s) / 10,000 Hz = .0343m. I don't believe this is the correct way to go about solving the problem, since the vehicle is moving at the start and the siren is not at rest.
  39. K

    B Doppler Effect: Light Blueshifted When Source Moving Towards Observer

    If I and the light source are both moving toward one another, I see light blueshifted. What if I'm at rest and the source moving towards me?
  40. J

    Doppler effect -- find the frequency

    I don't know what is wrong i think when bat gets sound f' = f×(c+v/c) when audience hears f''=f'×(c/c-v) f''=f×1.059 but it is wrong TT
  41. affank414

    Doppler Effect Problem (Very Confusing)

    Kindly don't delete the post again, I am a teacher. The question above mentioned came in Board Exams 2 years ago in our Country. We the group of teachers tried to solve but we found that the problems misses the required information to be solved. The data still seems to be the case of Doppler's...
  42. V

    How do you calculate wind speed using the Doppler effect?

    Problem Statement: The Doppler effect is routinely used to measure the speed of winds in storm systems. As the manager of a weather monitoring sta- tion in the Midwest, you are using a Doppler radar system that has a frequency of 625 MHz to bounce a radar pulse off of the raindrops in a...
  43. D

    Beat frequency and Doppler shift

    I found the beat frequency to be 4 Hz and the carrier frequency to be 260 Hz, but I'm not sure how to apply them to the solution/integrate the doppler and beat frequency equations?
  44. F

    Blood flow velocity via Doppler effect

    Homework Statement A Doppler flow meter is used to measure the speed of red blood cells. The frequency of the apparatus is f = 12 MHz. The sensor in the apparatus measure 1.8 kHz beats between the emitted frequency and the frequency of the ultrasound reflected back by the blood cells. The speed...
  45. Mohammed Sayanvala

    What do wave crests indicate about a boat's speed?

    Homework Statement *I cannot place the original image due to copyright reasons, but the image above is a good alternative. "Wave crests spread out behind a boat as shown above. What do the wave crests indicate about the boat's speed?" It is increasing. It is less than the speed of the water...
  46. Exidor

    I Time dilation vs. the Doppler effect

    If you had an object moving away from you at near C and it was emitting light that was pulsed at 1 Hz (from the point of view of the object) and you were to view it from a stationary position (earth), what would you see? It would be red shifted and the pulse rate would be slowed down? Would the...
  47. Arman777

    Derivation of Relativisitic Doppler effect with angle

    Homework Statement Derive the formula for the Doppler effect for a receiver traveling at an angle theta away from a planar source Homework Equations The Attempt at a Solution [/B] I thought that we can assume that the wavelength has two components ##λ_x## and ##λ_y## where ##λ_x =...
  48. Sorcerer

    I Understand Twin Paradox, Leading Clocks Lag & Doppler Effect

    I have an obvious understanding failure here, so hopefully someone can help me clear this up. Thanks for reading this obnoxious drivel. Leading clocks lag So, if two clocks are fixed to a the ends of a barn, and they are set off with light pulses from the midpoint, in the frame of the barn...
  49. jha192001

    Sound Wave Doppler effect question

    I have seen few examples on Doppler effect and i am confused about one such. We are standing on ground. If the source of sound S moves and Object O is stationary. We would presume the frequency as well as wavelength of sound be changed to the obeject O. But if O moves towards or away from S...
  50. itoero

    B Particle behavior and the Doppler effect

    How does particle physics explain the doppler effect? (including blue/red shift)