MHB Understanding Velocity and Acceleration of a Moving Particle

WMDhamnekar
MHB
Messages
376
Reaction score
28
A particle moves so that its position vector is given by $\vec{r}=\cos{(\omega t)}\hat{i} + \sin{(\omega t)}\hat{j}$. Show that the velocity $\vec{v}$ of the particle is perpendicular to $\vec{r}$ and $\vec{r} \times \vec{v}$ is a constant vector.

How to answer this question?
 
Last edited:
Physics news on Phys.org
First calculate [math]\vec{v} = \dfrac{d \vec{r}}{dt}[/math]. If [math]\vec{r} \cdot \vec{v} = 0[/math] for all t then they are always perpendicular.

-Dan
 
Since the velocity function is the derivative of the position function and the acceleration function is the derivative of the velocity function, I would say, "start by taking a Calculus class!". Have you done that? Do you know what the derivatives of $cos(\omega t)$ and $sin(\omega t)$ are? Do you know how to show that one vector is perpendicular to another? (Dot product.)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
722
  • · Replies 10 ·
Replies
10
Views
988
Replies
3
Views
3K
Replies
12
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
773