B Understanding Waves, Particles and Probabilities

geordief
Messages
224
Reaction score
50
TL;DR Summary
Am I getting close to a basic understanding of probability waves?
In the ongoing quantum interpretations and foundations thread vanahees71 explained to me that the wave particle duality has been explained by the model where the position of a particle is calculated according to a probability distribution traveling in space.

Am I understanding this correctly.The probability distribution has the same shape as a wave and that accounts for the wave part of the wave-particle duality?

And the particle part is when an interaction actually takes place?

Or am I nowhere near understanding this still?
 
Physics news on Phys.org
geordief said:
Am I understanding this correctly.The probability distribution has the same shape as a wave and that accounts for the wave part of the wave-particle duality?
Roughly, yes.
geordief said:
And the particle part is when an interaction actually takes place?
The wave looks like a particle when the width of wave is small. Interaction can be a part of the reason why this happens, but it's not that simple.
 
  • Like
Likes topsquark and geordief
geordief said:
Summary: Am I getting close to a basic understanding of probability waves?

In the ongoing quantum interpretations and foundations thread vanahees71 explained to me that the wave particle duality has been explained by the model where the position of a particle is calculated according to a probability distribution traveling in space.

Am I understanding this correctly.The probability distribution has the same shape as a wave and that accounts for the wave part of the wave-particle duality?

And the particle part is when an interaction actually takes place?

Or am I nowhere near understanding this still?
Classical physics involves two seemingly different physical things: particles and waves. It was assumed that some things were particles (e.g. electrons) and some things were waves (e.g light).

Then certain experiments were carried out that appeared to show light behaving like a particle (photoelectric effect) and electrons behaving like waves (electron diffraction). This was called wave-particle duality.

QM explains wave-particle duality by modelling an electron using a wavefunction. This single model explained both its particle-like and wave-like behaviour.

QM itself doesn't have wave-particle duality as part of the theory. And, indeed, some popular QM textbooks (e.g. Griffiths and Sakurai) either mention it only as a historical footnote or not at all.
 
  • Like
Likes topsquark and geordief
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top