- #1
Bashyboy
- 1,421
- 5
Homework Statement
Let ##R## be a commutative ring with identity and suppose that ##A## is an ideal in ##R## contained in the finite union of prime ideals ##P_1 \cup \cdots \cup P_n##. Show that ##A \subseteq P_i## for some ##i##.
Homework Equations
The Attempt at a Solution
The base case (##n=1##) is trivial. I will prove the contrapositive of the induction step. That is, assume that the following conditional holds:
If ##I## is an ideal such that ##I \not\subseteq Q_i## for all ##i \in \{1,...,n-1\}##, where ##Q_i## is a prime ideal, then ##I \not\subseteq \bigcup_{i=1}^{n-1} Q_i##.
And suppose that ##A \not\subseteq P_i## for ##i=1,2,...,n##, where ##P_i## is a prime ideal. If ##A## does not intersect any of the ##P_i##, the conclusion follows trivially. If it intersects at most ##n-1## of them, then we can apply the induction hypothesis to arrive at the conclusion. Hence, suppose that ##A## intersects each one of them.Let ##j \in \{1,...,n\}## be arbitrary. If ##A \cap P_j \subseteq P_i## for some ##i##, then we can remove ##P_j## from the collection of prime ideals and apply the induction hypothesis. Hence assume that ##A \cap P_j \not\subseteq P_i## for all ##i##. Since ##A \cap P_j## is an ideal, there exists an ##a_j \in A \cap P_j - \bigcup_{i \neq j} P_i## for every ##j##. Now clearly ##a_1 + a_2...a_n \in A##. Suppose that ##a_1 + a_2...a_n \in \bigcup_{i=1}^n P_i## for contradiction. Then ##a_1 + a_2...a_n \in P_i## for some ##i## or ##a_1 + a_i(a_2...a_n) \in P_i##. But ##a_i(a_2...a_n) \in P_i##, so ##a_1 \in P_i##, but this is a contradiction unless ##i=1##, but ##i## isn't equal to ##1##, so we get a contradiction anyways.
How does this sound? My only worry is, where did I use the fact that the ##P_i## are prime?