Smattering
- 170
- 21
Hi bcrowell,
thank you so much for your answer.
Yes, I was aware that our universe can certainly not be completely flat due to the fact that we can observe lots of gravitational effects all around us. The question was only related to the curvature on very large scales.
I was also aware that the curvature described by GR is a curvature of 3+1-dimensional spacetime. This is quite obvious, because otherwise the geodesic line of an object would be independent of its relative speed, wouldn't it?
But I have to confess that until now I would have thought that a curvature of spacetime would also imply a spatial curvature in most cases. I can even believe that there might be some special cases where the spacetime has a curvature although there is no spatial curvature. But I would not have thought that the universe can be spatially flat on cosmological scales, and still the spacetime has a curvature on the same scale. But maybe I will understand this once I have read the material you suggested.
Yes, that makes sense. In the case of an ordinary sphere, I can easily imagine that there might be no other topology that fits to that global curvature. However, I was rather wondering how this particular curvature results in case of Einstein's static universe. Is it important that it is static, or does a non-staic cosmological model (as you mentioned it before) also have the same topology?
thank you so much for your answer.
bcrowell said:When people say that our universe is approximately flat on large scales, they're referring to *spatial* flatness only. The Riemann tensor measures the curvature of spacetime, not just space. Our universe's spacetime is not even approximately flat. Spacetime curvature is how GR describes gravity. A universe with flat spacetime would be one in which there are no gravitational effects whatsoever.
Yes, I was aware that our universe can certainly not be completely flat due to the fact that we can observe lots of gravitational effects all around us. The question was only related to the curvature on very large scales.
I was also aware that the curvature described by GR is a curvature of 3+1-dimensional spacetime. This is quite obvious, because otherwise the geodesic line of an object would be independent of its relative speed, wouldn't it?
But I have to confess that until now I would have thought that a curvature of spacetime would also imply a spatial curvature in most cases. I can even believe that there might be some special cases where the spacetime has a curvature although there is no spatial curvature. But I would not have thought that the universe can be spatially flat on cosmological scales, and still the spacetime has a curvature on the same scale. But maybe I will understand this once I have read the material you suggested.
The Einstein field equations relate the curvature to the stress-energy tensor. The cosmological constant can be treated as one term in the stress-energy tensor. There are other terms as well, such as a term for dark matter and one for baryonic matter. Given the curvature of a manifold, there are theorems that in some cases uniquely determine the topology that is consistent with that curvature. This is one such case.
Yes, that makes sense. In the case of an ordinary sphere, I can easily imagine that there might be no other topology that fits to that global curvature. However, I was rather wondering how this particular curvature results in case of Einstein's static universe. Is it important that it is static, or does a non-staic cosmological model (as you mentioned it before) also have the same topology?