I Unruh Effect (1+1)D: Understanding Equation 5.68

thatboi
Messages
130
Reaction score
20
Hi all,
I am trying to work through the Unruh Effect for the (1+1)-dimensional massive scalar field case and came across the paper I attached. However, I am trying to derive equation 5.68, but am greatly struggling with the prefactor on the left hand side. When comparing the left hand side to (5.64), it is clear that there is an extra factor of \frac{1}{\sqrt{2\pi}} that seems to appear out of nowhere. Can someone provide assistance? Thank you.
 

Attachments

Physics news on Phys.org
thatboi said:
came across the paper I attached.
Can you give a link to where you obtained it?
 
Perhaps (5.42) could be the key.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top