Use binomial theorem to find the complex number

chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
If ##z=a+bi##, where ##a## and ##b## are real, use binomial theorem to find the real and imaginary parts of ##z^5##
Relevant Equations
Complex numbers
This is also pretty easy,
##z^5=(a+bi)^5##
##(a+bi)^5= a^5+\dfrac {5a^4bi}{1!}+\dfrac {20a^3(bi)^2}{2!}+\dfrac {60a^2(bi)^3}{3!}+\dfrac {120a(bi)^4}{4!}+\dfrac {120(bi)^5}{5!}##
##(a+bi)^5=a^5+5a^4bi-10a^3b^2-10a^2b^3i+5ab^4+b^5i##
##\bigl(\Re (z))=a^5-10a^3b^2+5ab^4##
##\bigl(\Im (z))= 5a^4b-10a^2b^3+b^5##

Any other variation, combinations may also work...
 
Last edited:
Physics news on Phys.org
chwala said:
##(a+bi)^5= a^5+\dfrac {5a^4bi}{1!}-\dfrac {20a^3(bi)^2}{2!}-\dfrac {60a^2(bi)^3}{3!}+\dfrac {120a(bi)^4}{4!}+\dfrac {120(bi)^5}{5!}##
You should have ##+## throughout that equation. That said, you got the right answer.
 
PeroK said:
You should have ##+## throughout that equation. That said, you got the right answer.
True, let me amend that...
 
Back
Top