Use Graph To Investigate Limit

  • Thread starter Thread starter nycmathguy
  • Start date Start date
  • Tags Tags
    Graph Limit
Click For Summary
SUMMARY

This discussion focuses on investigating the limit of the piecewise function f(x) as x approaches c, where c is defined as 2. The left-hand limit (LHL) of the function as x approaches 2 from the left is calculated as 4, while the right-hand limit (RHL) as x approaches 2 from the right is also 4. Despite initial confusion, it is established that the limit does exist and is equal to 4. The participants emphasize the importance of accurately graphing the function to visualize the limits and clarify misunderstandings.

PREREQUISITES
  • Understanding of piecewise functions
  • Knowledge of limits in calculus
  • Familiarity with graphing techniques
  • Ability to interpret left-hand and right-hand limits
NEXT STEPS
  • Learn how to graph piecewise functions accurately
  • Study the concept of limits in calculus, focusing on LHL and RHL
  • Explore online graphing tools such as Desmos and Wolfram Alpha
  • Practice problems involving limits of piecewise functions
USEFUL FOR

Students studying calculus, particularly those focusing on limits and piecewise functions, as well as educators looking for clarification on teaching these concepts effectively.

nycmathguy
Homework Statement
Use the graph of f(x) to investigate limit.
Relevant Equations
Piecewise Function
Use a graph to investigate limit of f(x) as
x→c at the number c.

Note: c is given to be 2. This number comes from the side conditions of the piecewise function.

See attachments.

lim (x + 2) as x tends to c from the left is 2.

lim x^2 as x tends to c from the right is 4.

LHL does not equal RHL.

Thus, the limit does not exist.

Note: If my graph is wrong, can someone please graph f(x)? I will then try again.

Thanks
 

Attachments

  • 20210616_091750.jpg
    20210616_091750.jpg
    27.4 KB · Views: 175
  • 20210616_093416.jpg
    20210616_093416.jpg
    34 KB · Views: 164
Physics news on Phys.org
nycmathguy said:
Homework Statement:: Use the graph of f(x) to investigate limit.
Relevant Equations:: Piecewise Function

Use a graph to investigate limit of f(x) as
x→c at the number c.

Note: c is given to be 2. This number comes from the side conditions of the piecewise function.

See attachments.

lim (x + 2) as x tends to c from the left is 2.
No.
$$\lim_{x \to 2^-}x+ 2 = 4$$
nycmathguy said:
lim x^2 as x tends to c from the right is 4.
Yes.
nycmathguy said:
LHL does not equal RHL.
Thus, the limit does not exist.
Try again.
nycmathguy said:
Note: If my graph is wrong, can someone please graph f(x)? I will then try again.
Your graph is incorrect for several reasons. The linear part (y = x + 2) runs from the left up to, but not including, the point (2, 4). The quadratic part (y = x^2) runs to the right from, but not including, the point (2, 4). The point (2, 4) would be on both the line and the parabola.
 
  • Like
Likes   Reactions: nycmathguy
Mark44 said:
No.
$$\lim_{x \to 2^-}x+ 2 = 4$$
Yes.
Try again.
Your graph is incorrect for several reasons. The linear part (y = x + 2) runs from the left up to, but not including, the point (2, 4). The quadratic part (y = x^2) runs to the right from, but not including, the point (2, 4). The point (2, 4) would be on both the line and the parabola.

I see my little typo. The limit does exist and it is 4.
 
nycmathguy said:
I see my little typo. The limit does exist and it is 4.
Right. Are you clear on what the graph looks like? The graph you showed was off by quite a lot.
 
Mark44 said:
No.
$$\lim_{x \to 2^-}x+ 2 = 4$$
Yes.
Try again.
Your graph is incorrect for several reasons. The linear part (y = x + 2) runs from the left up to, but not including, the point (2, 4). The quadratic part (y = x^2) runs to the right from, but not including, the point (2, 4). The point (2, 4) would be on both the line and the parabola.
Can you please graph this function and post a picture here for me to see?
 
nycmathguy said:
Can you please graph this function and post a picture here for me to see?
Just follow my description that you quoted.
 
Mark44 said:
Just follow my description that you quoted.

Can you recommend a good online free app or site for graphing functions? I don't understand how to use Desmos.
 
I use wolframalpha.com, but questions like this one you shouldn't need any graphing software. A large part of precalc is aimed at getting you familiar with simple functions like the linear one in the problem, as well as parabolas and a few other functions.

If you use graph paper, you can get a reasonable graph. Without graph paper, you can do OK if you're careful with your tick marks. For this problem, the linear part of the function goes through (-2, 0), (0, 2) and up to, but not quite to (2, 4). The quadratic part starts off just to the right of the point (2, 4) and goes through (3, 9), (4, 16), and so on.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K
Replies
30
Views
2K
Replies
1
Views
1K