Use Graph To Investigate Limit

  • Thread starter Thread starter nycmathguy
  • Start date Start date
  • Tags Tags
    Graph Limit
Click For Summary

Homework Help Overview

The discussion revolves around investigating the limit of a piecewise function f(x) as x approaches a given value c, specifically c = 2. Participants are analyzing the left-hand limit (LHL) and right-hand limit (RHL) to determine the existence of the limit.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants discuss the limits from both sides of c, with some asserting that the LHL is 4 and the RHL is also 4, while others initially claim the limits do not match. There are requests for clarification on the graph of the function and its accuracy.

Discussion Status

There is ongoing dialogue regarding the correctness of the graph and the limits. Some participants have provided feedback on the graphing attempts, while others have suggested using graphing tools or methods to visualize the function better. The discussion reflects varying interpretations of the limits and the graphical representation of the piecewise function.

Contextual Notes

Participants are working with a piecewise function and are encouraged to graph it accurately. There are mentions of specific points and behaviors of the function near c = 2, as well as references to the need for clarity in the graphical representation.

nycmathguy
Homework Statement
Use the graph of f(x) to investigate limit.
Relevant Equations
Piecewise Function
Use a graph to investigate limit of f(x) as
x→c at the number c.

Note: c is given to be 2. This number comes from the side conditions of the piecewise function.

See attachments.

lim (x + 2) as x tends to c from the left is 2.

lim x^2 as x tends to c from the right is 4.

LHL does not equal RHL.

Thus, the limit does not exist.

Note: If my graph is wrong, can someone please graph f(x)? I will then try again.

Thanks
 

Attachments

  • 20210616_091750.jpg
    20210616_091750.jpg
    27.4 KB · Views: 177
  • 20210616_093416.jpg
    20210616_093416.jpg
    34 KB · Views: 167
Physics news on Phys.org
nycmathguy said:
Homework Statement:: Use the graph of f(x) to investigate limit.
Relevant Equations:: Piecewise Function

Use a graph to investigate limit of f(x) as
x→c at the number c.

Note: c is given to be 2. This number comes from the side conditions of the piecewise function.

See attachments.

lim (x + 2) as x tends to c from the left is 2.
No.
$$\lim_{x \to 2^-}x+ 2 = 4$$
nycmathguy said:
lim x^2 as x tends to c from the right is 4.
Yes.
nycmathguy said:
LHL does not equal RHL.
Thus, the limit does not exist.
Try again.
nycmathguy said:
Note: If my graph is wrong, can someone please graph f(x)? I will then try again.
Your graph is incorrect for several reasons. The linear part (y = x + 2) runs from the left up to, but not including, the point (2, 4). The quadratic part (y = x^2) runs to the right from, but not including, the point (2, 4). The point (2, 4) would be on both the line and the parabola.
 
  • Like
Likes   Reactions: nycmathguy
Mark44 said:
No.
$$\lim_{x \to 2^-}x+ 2 = 4$$
Yes.
Try again.
Your graph is incorrect for several reasons. The linear part (y = x + 2) runs from the left up to, but not including, the point (2, 4). The quadratic part (y = x^2) runs to the right from, but not including, the point (2, 4). The point (2, 4) would be on both the line and the parabola.

I see my little typo. The limit does exist and it is 4.
 
nycmathguy said:
I see my little typo. The limit does exist and it is 4.
Right. Are you clear on what the graph looks like? The graph you showed was off by quite a lot.
 
Mark44 said:
No.
$$\lim_{x \to 2^-}x+ 2 = 4$$
Yes.
Try again.
Your graph is incorrect for several reasons. The linear part (y = x + 2) runs from the left up to, but not including, the point (2, 4). The quadratic part (y = x^2) runs to the right from, but not including, the point (2, 4). The point (2, 4) would be on both the line and the parabola.
Can you please graph this function and post a picture here for me to see?
 
nycmathguy said:
Can you please graph this function and post a picture here for me to see?
Just follow my description that you quoted.
 
Mark44 said:
Just follow my description that you quoted.

Can you recommend a good online free app or site for graphing functions? I don't understand how to use Desmos.
 
I use wolframalpha.com, but questions like this one you shouldn't need any graphing software. A large part of precalc is aimed at getting you familiar with simple functions like the linear one in the problem, as well as parabolas and a few other functions.

If you use graph paper, you can get a reasonable graph. Without graph paper, you can do OK if you're careful with your tick marks. For this problem, the linear part of the function goes through (-2, 0), (0, 2) and up to, but not quite to (2, 4). The quadratic part starts off just to the right of the point (2, 4) and goes through (3, 9), (4, 16), and so on.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K
Replies
30
Views
2K
Replies
1
Views
1K