Use Remainder theorem to find factors of ##(a-b)^3+(b-c)^3+(c-a)^3##

Click For Summary

Homework Help Overview

The discussion revolves around the expression \((a-b)^3+(b-c)^3+(c-a)^3\) and the application of the Remainder theorem to find its factors. Participants explore polynomial identities and factorization techniques related to this expression.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants present various approaches to factor the expression, including polynomial expansion and substitution methods. Some question the application of the Remainder theorem and its specific context, while others discuss the implications of equal values among \(a\), \(b\), and \(c\) on the expression's value.

Discussion Status

The discussion is active, with multiple interpretations being explored. Some participants have offered insights into potential factors, while others are seeking clarification on the Remainder theorem and its relevance to the problem. There is no explicit consensus yet on the best approach or understanding of the theorem's application.

Contextual Notes

Participants note that the expression vanishes when any two of \(a\), \(b\), or \(c\) are equal, suggesting that \((a-b)\), \((b-c)\), and \((c-a)\) are factors. There is also mention of the polynomial's behavior under different variable assignments and the need for clarity on the type of remainder theorem being referenced.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
Use Remainder theorem to find factors of ##(a-b)^3+(b-c)^3+(c-a)^3##
Relevant Equations
Remainder theorem
My first approach;
##(a-b)^3+(b-c)^3+(c-a)^3=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3##
##=-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2##

what i did next was to add and subtract ##3abc## ...just by checking the terms ( I did not use Remainder theorem ):rolleyes:

##
=3abc-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2-3abc##
##=3c(ab-ac-b^2+bc)-3a(ab-ac-b^2+bc)##
##=3(c-a)(ab-ac-b^2+bc)##
##=3(c-a)(a(b-c)-b(b-c))##
##=3(c-a)(a-b)(b-c)##

I need to check later on how to apply the Remainder theorem, any insight on this is welcome...

My second approach;

If##a=b## then ##f(b)=(b-c)^3+(c-a)^3##
If ##b=c##, ##f(c)=(a-b)^3+(c-a)^3##
If ##c=a##, ##f(a)=(a-b)^3+(b-c)^3##

If ##a=b## then ##(a-b)## will be a factor,
if ##b=c##, then ##(b-c) ## will be a factor,
If ##c=a##, then ##(c-a)## will be a factor. Therefore on taking product of the factors we shall have

##(a-b)(b-c)(c-a)=abc-a^2b-ac^2+a^2c-b^2c+ab^2+bc^2-abc## ... on multiplying both sides by ##3## we shall have,
##3(a-b)(b-c)(c-a)=3[abc-a^2b-ac^2+a^2c-b^2c+ab^2+bc^2-abc]≡(a-b)^3+(b-c)^3+(c-a)^3##
 
Last edited:
Physics news on Phys.org
We observe it is quadratic for a, b and c and if any of two are equal it vanishes so it has factor (a-b)(b-c)(c-a).
say a=-1,b=0,c=1 it is 6 and (a-b)(b-c)(c-a)=2 so the coefficient is 3. In total 3 (a-b)(b-c)(c-a).
 
chwala said:
Homework Statement:: Use Remainder theorem to find factors of ##(a-b)^3+(b-c)^3+(c-a)^3##
Relevant Equations:: Remainder theorem

My approach;
##(a-b)^3+(b-c)^3+(c-a)^3=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3##
##=-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2##

what i did next was to add and subtract ##3abc## ...just by checking the terms ( I did not use Remainder theorem ):rolleyes:

##
=3abc-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2-3abc##
##=3c(ab-ac-b^2+bc)-3a(ab-ac-b^2+bc)##
##=3(c-a)(ab-ac-b^2+bc)##
##=3(c-a)(a(b-c)-b(b-c))##
##=3(c-a)(a-b)(b-c)##

I need to check later on how to apply the Remainder theorem, any insight on this is welcome...

Alternatively,
If##a=b## then ##f(b)=(b-c)^3+(c-a)^3##
If ##b=c##, ##f(c)=(a-b)^3+(c-a)^3##
If ##c=a##, ##f(a)=(a-b)^3+(b-c)^3##

If ##a=b## then ##(a-b)## will be a factor,
if ##b=c##, then ##(b-c) ## will be a factor,
If ##c=a##, then ##(c-a)## will be a factor. Therefore on taking product of the factors we shall have##(a-b)(b-c)(c-a)=abc-a^2b-ac^2+a^2c-b^2c+ab^2+bc^2-abc## ...

##f(b)-(c-a)^3=(b-c)^3##
##f(c)-(a-b)^3=(c-a)^3##
##f(a)-(b-c)^3=(a-b)^3##
What do you mean by remainder theorem? The Chinese remainder theorem, Euclidean division, or something else?

One immediately sees that the expression is zero whenever two out of ##a,b,c## coincide. Thus all ##a-b\, , \,b-c\, , \,c-a## divide the expression. They are also pairwise coprime, so ##(a-b)(b-c)(c-a)## divides the expression. Finally, consider the degrees.
 
fresh_42 said:
What do you mean by remainder theorem? The Chinese remainder theorem, Euclidean division, or something else?

One immediately sees that the expression is zero whenever two out of ##a,b,c## coincide. Thus all ##a-b\, , \,b-c\, , \,c-a## divide the expression. They are also pairwise coprime, so ##(a-b)(b-c)(c-a)## divides the expression. Finally, consider the degrees.
https://www.purplemath.com/modules/remaindr.htm
 
chwala said:
Ok, that is Euclidean division. You can consider the polynomial consecutively as element of ##\mathbb{Z}[a]\, , \,\mathbb{Z}[ b ]\, , \,\mathbb{Z}[c] .## E.g. if ##p(a):=(a-b)^3+(b-c)^3+(c-a)^3\in \mathbb{Z}[a]## then we have (I change from ##a## to ##x## to make it clearer) ##p(x)=-3x^2b+3xb^2-b^3+(b-c)^3+3x^2c-3xc^2## which we want to divide by ##x-b## and ##c-x.##

I like your version better. At least we have to do it only once for symmetry reasons.

(Edit: Corrected the factor to ##x-b,x-c##.)
 
Last edited:
  • Like
Likes   Reactions: chwala

Similar threads

  • · Replies 47 ·
2
Replies
47
Views
6K
Replies
4
Views
2K
Replies
21
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
18
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K