Use Remainder theorem to find factors of ##(a-b)^3+(b-c)^3+(c-a)^3##

Click For Summary
SUMMARY

The discussion focuses on using the Remainder Theorem to find factors of the polynomial expression ##(a-b)^3+(b-c)^3+(c-a)^3##. Participants derive that the expression can be factored as ##3(a-b)(b-c)(c-a)##, confirming that each of the differences ##(a-b)##, ##(b-c)##, and ##(c-a)## are factors. The conversation also touches on the application of the Remainder Theorem in polynomial division, particularly in the context of evaluating the expression when two variables are equal. The conclusion emphasizes the polynomial's behavior under specific conditions, reinforcing the factors identified.

PREREQUISITES
  • Understanding of polynomial expressions and their properties
  • Familiarity with the Remainder Theorem in algebra
  • Knowledge of factorization techniques in algebra
  • Basic concepts of symmetric polynomials
NEXT STEPS
  • Study the Remainder Theorem in detail, focusing on polynomial division techniques
  • Explore symmetric polynomials and their applications in algebra
  • Practice factorization of cubic polynomials using various methods
  • Investigate the implications of the Chinese Remainder Theorem in polynomial contexts
USEFUL FOR

Mathematicians, algebra students, educators, and anyone interested in polynomial factorization and the application of the Remainder Theorem in algebraic expressions.

chwala
Gold Member
Messages
2,828
Reaction score
420
Homework Statement
Use Remainder theorem to find factors of ##(a-b)^3+(b-c)^3+(c-a)^3##
Relevant Equations
Remainder theorem
My first approach;
##(a-b)^3+(b-c)^3+(c-a)^3=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3##
##=-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2##

what i did next was to add and subtract ##3abc## ...just by checking the terms ( I did not use Remainder theorem ):rolleyes:

##
=3abc-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2-3abc##
##=3c(ab-ac-b^2+bc)-3a(ab-ac-b^2+bc)##
##=3(c-a)(ab-ac-b^2+bc)##
##=3(c-a)(a(b-c)-b(b-c))##
##=3(c-a)(a-b)(b-c)##

I need to check later on how to apply the Remainder theorem, any insight on this is welcome...

My second approach;

If##a=b## then ##f(b)=(b-c)^3+(c-a)^3##
If ##b=c##, ##f(c)=(a-b)^3+(c-a)^3##
If ##c=a##, ##f(a)=(a-b)^3+(b-c)^3##

If ##a=b## then ##(a-b)## will be a factor,
if ##b=c##, then ##(b-c) ## will be a factor,
If ##c=a##, then ##(c-a)## will be a factor. Therefore on taking product of the factors we shall have

##(a-b)(b-c)(c-a)=abc-a^2b-ac^2+a^2c-b^2c+ab^2+bc^2-abc## ... on multiplying both sides by ##3## we shall have,
##3(a-b)(b-c)(c-a)=3[abc-a^2b-ac^2+a^2c-b^2c+ab^2+bc^2-abc]≡(a-b)^3+(b-c)^3+(c-a)^3##
 
Last edited:
Physics news on Phys.org
We observe it is quadratic for a, b and c and if any of two are equal it vanishes so it has factor (a-b)(b-c)(c-a).
say a=-1,b=0,c=1 it is 6 and (a-b)(b-c)(c-a)=2 so the coefficient is 3. In total 3 (a-b)(b-c)(c-a).
 
chwala said:
Homework Statement:: Use Remainder theorem to find factors of ##(a-b)^3+(b-c)^3+(c-a)^3##
Relevant Equations:: Remainder theorem

My approach;
##(a-b)^3+(b-c)^3+(c-a)^3=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3##
##=-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2##

what i did next was to add and subtract ##3abc## ...just by checking the terms ( I did not use Remainder theorem ):rolleyes:

##
=3abc-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2-3abc##
##=3c(ab-ac-b^2+bc)-3a(ab-ac-b^2+bc)##
##=3(c-a)(ab-ac-b^2+bc)##
##=3(c-a)(a(b-c)-b(b-c))##
##=3(c-a)(a-b)(b-c)##

I need to check later on how to apply the Remainder theorem, any insight on this is welcome...

Alternatively,
If##a=b## then ##f(b)=(b-c)^3+(c-a)^3##
If ##b=c##, ##f(c)=(a-b)^3+(c-a)^3##
If ##c=a##, ##f(a)=(a-b)^3+(b-c)^3##

If ##a=b## then ##(a-b)## will be a factor,
if ##b=c##, then ##(b-c) ## will be a factor,
If ##c=a##, then ##(c-a)## will be a factor. Therefore on taking product of the factors we shall have##(a-b)(b-c)(c-a)=abc-a^2b-ac^2+a^2c-b^2c+ab^2+bc^2-abc## ...

##f(b)-(c-a)^3=(b-c)^3##
##f(c)-(a-b)^3=(c-a)^3##
##f(a)-(b-c)^3=(a-b)^3##
What do you mean by remainder theorem? The Chinese remainder theorem, Euclidean division, or something else?

One immediately sees that the expression is zero whenever two out of ##a,b,c## coincide. Thus all ##a-b\, , \,b-c\, , \,c-a## divide the expression. They are also pairwise coprime, so ##(a-b)(b-c)(c-a)## divides the expression. Finally, consider the degrees.
 
fresh_42 said:
What do you mean by remainder theorem? The Chinese remainder theorem, Euclidean division, or something else?

One immediately sees that the expression is zero whenever two out of ##a,b,c## coincide. Thus all ##a-b\, , \,b-c\, , \,c-a## divide the expression. They are also pairwise coprime, so ##(a-b)(b-c)(c-a)## divides the expression. Finally, consider the degrees.
https://www.purplemath.com/modules/remaindr.htm
 
chwala said:
Ok, that is Euclidean division. You can consider the polynomial consecutively as element of ##\mathbb{Z}[a]\, , \,\mathbb{Z}[ b ]\, , \,\mathbb{Z}[c] .## E.g. if ##p(a):=(a-b)^3+(b-c)^3+(c-a)^3\in \mathbb{Z}[a]## then we have (I change from ##a## to ##x## to make it clearer) ##p(x)=-3x^2b+3xb^2-b^3+(b-c)^3+3x^2c-3xc^2## which we want to divide by ##x-b## and ##c-x.##

I like your version better. At least we have to do it only once for symmetry reasons.

(Edit: Corrected the factor to ##x-b,x-c##.)
 
Last edited:
  • Like
Likes   Reactions: chwala

Similar threads

  • · Replies 47 ·
2
Replies
47
Views
6K
Replies
4
Views
2K
Replies
21
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
18
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K