Using Chain Rule to Find Partial Derivatives of a Multivariable Function

  • Thread starter Thread starter Turbodog66
  • Start date Start date
  • Tags Tags
    Chain Chain rule
Turbodog66
Messages
13
Reaction score
0

Homework Statement


Suppose $$z=x^2 sin(y), x=5t^2-5s^2, y=4st$$
Use the chain rule to find $$\frac{\partial z}{\partial s} \text{ and } \frac{\partial z}{\partial t}$$

Homework Equations


$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

The Attempt at a Solution


$$\frac{\partial z}{\partial x} = 2x\sin(y)$$
$$\frac{\partial x}{\partial s} = -10s$$
$$\frac{\partial z}{\partial y} = x^2\cos(y)$$
$$\frac{\partial y}{\partial s} = 4t$$
With those I then substitute the values into the equation, and I came up with $$\frac{\partial z}{\partial s}=2x\sin(y)(-10s)+x^2\cos(y)(4t)=-20(5t^2-5s^2)(s)\sin(4st)+4(5t^2-5s^2)(t)\cos(4st)$$
Where am I going wrong? Also, I am still learning Latex, so I apologize for the crude display.
 
Physics news on Phys.org
Turbodog66 said:

Homework Statement


Suppose $$z=x^2 sin(y), x=5t^2-5s^2, y=4st$$
Use the chain rule to find $$\frac{\partial z}{\partial s} \text{ and } \frac{\partial z}{\partial t}$$

Homework Equations


$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

The Attempt at a Solution


$$\frac{\partial z}{\partial x} = 2x\sin(y)$$
$$\frac{\partial x}{\partial s} = -10s$$
$$\frac{\partial z}{\partial y} = x^2\cos(y)$$
$$\frac{\partial y}{\partial s} = 4t$$
With those I then substitute the values into the equation, and I came up with $$\frac{\partial z}{\partial s}=2x\sin(y)(-10s)+x^2\cos(y)(4t)=-20(5t^2-5s^2)(s)\sin(4st)+4(5t^2-5s^2)(t)\cos(4st)$$
Where am I going wrong? Also, I am still learning Latex, so I apologize for the crude display.

In the last term you should have ##(5t^2-5s^2)^2##, not ##(5t^2-5s^2)##.
 
  • Like
Likes Turbodog66
Ray Vickson said:
In the last term you should have ##(5t^2-5s^2)^2##, not ##(5t^2-5s^2)##.
Thanks! Never fails I overlook something simple like that. Other than that, does it appear that I am going about it correctly?
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top