Using Chain Rule to Find Partial Derivatives of a Multivariable Function

  • Thread starter Thread starter Turbodog66
  • Start date Start date
  • Tags Tags
    Chain Chain rule
Click For Summary
SUMMARY

The discussion focuses on using the chain rule to find the partial derivatives of the multivariable function $$z=x^2 \sin(y)$$, where $$x=5t^2-5s^2$$ and $$y=4st$$. The correct formula for the partial derivative with respect to $$s$$ is given by $$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$. The user correctly computes the derivatives but overlooks a critical detail in the final term, where it should be $$ (5t^2-5s^2)^2 $$ instead of $$ (5t^2-5s^2) $$.

PREREQUISITES
  • Understanding of multivariable calculus concepts, specifically the chain rule.
  • Familiarity with partial derivatives and their notation.
  • Basic knowledge of trigonometric functions and their derivatives.
  • Proficiency in using LaTeX for mathematical expressions.
NEXT STEPS
  • Review the chain rule in multivariable calculus for deeper comprehension.
  • Practice finding partial derivatives of other multivariable functions.
  • Learn how to properly format mathematical expressions in LaTeX.
  • Explore applications of partial derivatives in optimization problems.
USEFUL FOR

Students studying multivariable calculus, mathematics educators, and anyone seeking to improve their skills in calculating partial derivatives using the chain rule.

Turbodog66
Messages
13
Reaction score
0

Homework Statement


Suppose $$z=x^2 sin(y), x=5t^2-5s^2, y=4st$$
Use the chain rule to find $$\frac{\partial z}{\partial s} \text{ and } \frac{\partial z}{\partial t}$$

Homework Equations


$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

The Attempt at a Solution


$$\frac{\partial z}{\partial x} = 2x\sin(y)$$
$$\frac{\partial x}{\partial s} = -10s$$
$$\frac{\partial z}{\partial y} = x^2\cos(y)$$
$$\frac{\partial y}{\partial s} = 4t$$
With those I then substitute the values into the equation, and I came up with $$\frac{\partial z}{\partial s}=2x\sin(y)(-10s)+x^2\cos(y)(4t)=-20(5t^2-5s^2)(s)\sin(4st)+4(5t^2-5s^2)(t)\cos(4st)$$
Where am I going wrong? Also, I am still learning Latex, so I apologize for the crude display.
 
Physics news on Phys.org
Turbodog66 said:

Homework Statement


Suppose $$z=x^2 sin(y), x=5t^2-5s^2, y=4st$$
Use the chain rule to find $$\frac{\partial z}{\partial s} \text{ and } \frac{\partial z}{\partial t}$$

Homework Equations


$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

The Attempt at a Solution


$$\frac{\partial z}{\partial x} = 2x\sin(y)$$
$$\frac{\partial x}{\partial s} = -10s$$
$$\frac{\partial z}{\partial y} = x^2\cos(y)$$
$$\frac{\partial y}{\partial s} = 4t$$
With those I then substitute the values into the equation, and I came up with $$\frac{\partial z}{\partial s}=2x\sin(y)(-10s)+x^2\cos(y)(4t)=-20(5t^2-5s^2)(s)\sin(4st)+4(5t^2-5s^2)(t)\cos(4st)$$
Where am I going wrong? Also, I am still learning Latex, so I apologize for the crude display.

In the last term you should have ##(5t^2-5s^2)^2##, not ##(5t^2-5s^2)##.
 
  • Like
Likes   Reactions: Turbodog66
Ray Vickson said:
In the last term you should have ##(5t^2-5s^2)^2##, not ##(5t^2-5s^2)##.
Thanks! Never fails I overlook something simple like that. Other than that, does it appear that I am going about it correctly?
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K