slavito
- 3
- 0
Homework Statement
Suppose a wire has a radius R and a current density of J = I_0 \frac{x^2} {R^4}\hat{k}. Taking the wire to have cylindrical geometry, calculate the total current flowing down the wire, defined as I = \int J \cdot \vec{dA}.
Homework Equations
J = I_0 \frac{x^2} {R^4}\hat{k}
I = \int J \cdot \vec{dA}
The Attempt at a Solution
Here, I assumed that dA = R dR dx . I then attempted to do the Integral. I assumed Io was a constant, so I pulled that out of the Integral, giving me...
I = I_o\int x^2\cdot \vec{dx} \int R^{-3} \cdot \vec{dR}
Evaluating, I got...
I = I_o\frac{x^3}{3}\frac{R^{-2}}{-2}\hat{k}
I have no idea if this is right or wrong. I don't even know if I'm on the right track. Please, any sort of help you could give me would be greatly appreciated!