Using Inner Product Properties to Solve Vector Problems

Click For Summary

Homework Help Overview

The discussion revolves around evaluating expressions involving unit vectors a, b, and c, given specific dot products between them. The original poster is struggling to eliminate variables to find the magnitude of vector a and is seeking clarification on their approach.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to use the relationships between the dot products of the vectors but expresses uncertainty about their method. Some participants question the validity of the original poster's approach, particularly regarding the use of dot products and the definitions involved.

Discussion Status

Participants have provided guidance on the properties of the dot product and emphasized the importance of understanding unit vectors. There is an ongoing exploration of the relationships between the vectors, but no consensus has been reached on the original poster's method or the correct approach to the problem.

Contextual Notes

There are indications that the original poster may have misconceptions about the properties of unit vectors and the dot product, which are being discussed among participants. The problem context includes specific values for the dot products, which are critical to the evaluation of the expressions.

Blackbear38
Messages
1
Reaction score
0
Summary:: I need to solve a problem for an assignment but just couldn't find the right approach. I fail to eliminate b or c to get only the magnitude of a.

Let a, b and c be unit vectors such that a⋅b=1/4, b⋅c=1/7 and a⋅c=1/8. Evaluate (write in the exact form):
- ||4a||
- 3a.5b
- a.(b-c)
- (a+b+c).(a-b)

What I first did was ab.ac = a^(2).bc then substitute values of ab, ac, and bc, but I cannot confirm that this is the correct approach. Hence, I found:

ab.ac = a^(2).bc
(1/4)(1/8)=a^(2)(1/7)
a^(2) = 7/32
Hence, ||a|| = sqrt(14)/8

I really hope that this doubt can be clarified for all the parts of my question. Thanks!

[Moderator's note: moved from a technical forum.]
 
Physics news on Phys.org
What you need to know is

a is a unit vector, so what is its magnitude?
scalars and vectors are commutative.
The scalar product is commutative and distributive.

The rest is given.
 
Blackbear38 said:
Summary:: I need to solve a problem for an assignment but just couldn't find the right approach. I fail to eliminate b or c to get only the magnitude of a.

Let a, b and c be unit vectors such that a⋅b=1/4, b⋅c=1/7 and a⋅c=1/8. Evaluate (write in the exact form):
- ||4a||
- 3a.5b
- a.(b-c)
- (a+b+c).(a-b)

What I first did was ab.ac = a^(2).bc
I have no idea why you did this, and if '.' means "dot product" the above makes no sense.
##a \cdot b## is a number (given) and ##a \cdot c## is also a number (also given). The dot product is defined for vectors, but not plain old numbers.
Blackbear38 said:
Then substitute values of ab, ac, and bc, but I cannot confirm that this is the correct approach.
It's not.
Blackbear38 said:
Hence, I found:

ab.ac = a^(2).bc
(1/4)(1/8)=a^(2)(1/7)
a^(2) = 7/32
Hence, ||a|| = sqrt(14)/8

I really hope that this doubt can be clarified for all the parts of my question. Thanks!

[Moderator's note: moved from a technical forum.]
Following up on @gleem's comments, you need to be looking at the properties of the dot product, such as ##ku \cdot v = k u \cdot v## and ##u \cdot (v +w) = u \cdot v + u \cdot w##, etc. This is a very easy set of problems if you know these properties, plus the fact that a, b, and c are all unit vectors.
 
Sorry for this question but are you sure you know what a unit vector is?
 
You need to rely more on the basic properties of the inner product. The inner product is linear in both its arguments for real scalars. That should give you almost all the answers.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
4K
Replies
6
Views
1K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K