Using Integral methods to find a summation of series (infinite)

Click For Summary

Discussion Overview

The discussion revolves around the summation of the series $\displaystyle \sum_{n=1}^{\infty}\frac{1}{9n^2 + 3n - 2}$ and explores the possibility of using integral methods to derive this sum. Participants examine various approaches, including partial fractions and telescoping series, while expressing interest in the relationship between integration and series.

Discussion Character

  • Exploratory
  • Mathematical reasoning

Main Points Raised

  • One participant suggests using partial fractions to simplify the series into a telescoping series.
  • Another participant corrects a factorization error, stating the correct factors are $(3n+2)(3n-1)$.
  • There is an interest expressed in finding a method to derive the sum using integrals, with one participant noting their fascination with the connection between integration and series.
  • A link to a previous discussion on interchanging summation and integrals is provided as a potential resource.

Areas of Agreement / Disagreement

Participants generally agree on the factorization of the polynomial, but there is no consensus on the method to derive the sum using integrals, as the exploration of this idea remains open-ended.

Contextual Notes

Participants have not resolved the specific method for using integrals to derive the sum, and there are unresolved aspects regarding the integration approach.

Amad27
Messages
409
Reaction score
1
Hi, let's take the sum:

$\displaystyle \sum_{n=1}^{\infty}\frac{1}{9n^2 + 3n - 2}$

$\implies 9n^2 + 3n - 2 = 9n^2 + 6n - 3n - 2 = 3n(3n + 2) - (3n + 2) = (3n - 1)(3n - 2)$

The simplest way would be to use partial fractions, and then convert this into a telescoping series. Which makes the sum extremely simple, but I am looking for a way in, which I could use integrals, perhaps a definite integral in, which I could derive this sum. Any ideas?

The $f(n)$ is $f(n) = \frac{1}{(3n-1)(3n-2)}$

$f'(n) = \frac{-9(2n-1)}{(9n^2 - 9n + 2)^2}$

$\displaystyle \int_{n}^{n+1} \frac{-9(2x-1)}{(9x^2 - 9x + 2)^2} \,dx$ does not work.

I was thinking of making a infinite sum partition of an improper integral part of, which the result would the required sum: $\displaystyle \sum_{n=1}^{\infty}\frac{1}{9n^2 + 3n - 2}$
 
Physics news on Phys.org
Olok said:
Hi, let's take the sum:

$\displaystyle \sum_{n=1}^{\infty}\frac{1}{9n^2 + 3n - 2}$

$\implies 9n^2 + 3n - 2 = 9n^2 + 6n - 3n - 2 = 3n(3n + 2) - (3n + 2) = (3n - 1)(3n - 2)$

The simplest way would be to use partial fractions, and then convert this into a telescoping series. Which makes the sum extremely simple,

You have made a mistake it should be $(3n+2)(3n-1)$.
 
ZaidAlyafey said:
You have made a mistake it should be $(3n+2)(3n-1)$.
that is indeed what I meant, you can see that I meant that by seeing the factors, it was a typo. Thanks!

But so, is there a way for doing this using integration.

For some reason integration and its link to series interests me a lot, so that is why I am trying to find this out!

Thanks!
 
Olok said:
that is indeed what I meant, you can see that I meant that by seeing the factors, it was a typo. Thanks!

But so, is there a way for doing this using integration.

For some reason integration and its link to series interests me a lot, so that is why I am trying to find this out!

Thanks!

You already did it correctly in this http://mathhelpboards.com/calculus-10/interchanging-summation-integrals-13033.html#post61800.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K