# Using polar coordinates in 1-dimensional problems

• kent davidge
In summary, choosing a coordinate system can greatly affect the convenience of solving a physical problem. In the case of a particle constrained to move in the y direction, writing y in terms of polar coordinates may seem like a good idea, but it actually makes the problem harder to solve as only one of the polar coordinates will be a free parameter. This can be seen in the example of the line x=1, where the relation between y and θ is just a non-linear change of parametrisation.
kent davidge
If I have a physical problem, say, a particle which is constrained to move in the ##y## direction, which means that its ##x## coordinate remains fixed, does it make sense to write ##y## in terms of polar coordinates? That is, ##y = r \sin\theta##. Since now I have two parameters ##r,\theta## varying, so this has only made solving the problem harder than it must be, right?

kent davidge said:
so this has only made solving the problem harder than it must be, right?
Yes.

We choose coordinate systems to be convenient. Some choices can be very inconvenient.

kent davidge said:
If I have a physical problem, say, a particle which is constrained to move in the ##y## direction, which means that its ##x## coordinate remains fixed, does it make sense to write ##y## in terms of polar coordinates? That is, ##y = r \sin\theta##. Since now I have two parameters ##r,\theta## varying, so this has only made solving the problem harder than it must be, right?
If you do this, only one of your polar coordinates will be a free parameter as the other will be fixed. For example, consider the line ##x = 1##. On this line, ##r^2 = 1 + y^2## which means that, if you fix ##\theta##, then ##r^2(1-\sin^2\theta) = 1## and so ##r = 1/\cos\theta##. The relation between ##y## and ##\theta## is therefore ##y = \tan\theta##, which is just a (non-linear) change of parametrisation of your line.

Lnewqban

## What are polar coordinates?

Polar coordinates are a system of representing points in a plane using a distance from the origin and an angle from a fixed reference direction.

## How are polar coordinates used in 1-dimensional problems?

In 1-dimensional problems, polar coordinates are used to represent points along a single axis, typically the x-axis. This allows for a more efficient and intuitive way of solving problems involving circular or rotational motion.

## What are the advantages of using polar coordinates in 1-dimensional problems?

One advantage of using polar coordinates in 1-dimensional problems is that it simplifies the equations and makes them easier to solve. It also allows for a more visual representation of the problem, making it easier to understand and analyze.

## Are there any limitations to using polar coordinates in 1-dimensional problems?

Yes, there are some limitations to using polar coordinates in 1-dimensional problems. It is not suitable for all types of problems and may not be as accurate as other coordinate systems in certain situations.

## How can I convert between polar coordinates and Cartesian coordinates?

To convert from polar coordinates to Cartesian coordinates, you can use the formulas x = r * cos(theta) and y = r * sin(theta). To convert from Cartesian coordinates to polar coordinates, you can use the formulas r = sqrt(x^2 + y^2) and theta = arctan(y/x).

• Optics
Replies
8
Views
1K
• Optics
Replies
2
Views
663
• Optics
Replies
7
Views
2K
• Introductory Physics Homework Help
Replies
8
Views
335
• Optics
Replies
3
Views
1K
• Optics
Replies
6
Views
6K
• Optics
Replies
7
Views
4K
• Optics
Replies
3
Views
2K
• General Math
Replies
4
Views
1K
• Programming and Computer Science
Replies
5
Views
2K