indie452
- 115
- 0
Homework Statement
magnetic field is azimuthal B(r) = B(p,z) \phi
current density J(r) = Jp(p,z) p + Jz(p,z) z
= p*exp[-p] p + (p-2)*z*exp[-p] z
use stokes theorem to find B-filed induced by current everywhere in space
Homework Equations
stokes - {integral}dS.[curl A] = {closed integral}dl.A
curl B(r) = J(r)
The Attempt at a Solution
={integral}dS.[curl B(r)] = {closed integral}dl.B(r)
={integral}dS.J(r) = {closed integral}dl.B(p,z) \phi
{integral}dS.J(r) = {integral}dS.p*exp[-p] p + (p-2)*z*exp[-p] z = {closed integral}dl.B(p,z) \phi
dl = pd\phi \phi
dS = pd\phidz p + pd\phidp z
So:
{closed integral}pd\phi.B(p,z) \phi - with limits 0-2pi
= B(p,z)*2pi*p
{integral}dS.p*exp[-p] p + (p-2)*z*exp[-p] z
do in 2 parts:
{integral}pd\phidz.p*exp[-p] p - with limits 0-2pi and 0-R
= 2pi*p2*R*exp[-p]
{integral}pd\phidp.(p-2)*z*exp[-p] - with limits 0-2pi and 0-r
= -2pi*r2*exp[-r]
so B(p,z)*2pi*p = 2pi*p*R*exp[-p] - 2pi*r2*exp[-r]
= B(p,z) = p*R*exp[-p] - r2/p*exp[-r]
is this answer right?