MHB Using the Product Rule to Solve $\d{}{x}{3}^{x}\ln\left({3}\right)$

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\d{}{x}{3}^{x}\ln\left({3}\right)=$
I tried the product rule but didn't get the answer😖
 
Physics news on Phys.org
Hi karush,

You do not need product rule. $\ln(3)$ is a constant.
 
How about the $3^x$
 
karush said:
How about the $3^x$

$$3^x = e^{x\ln 3}$$
 
karush said:
How about the $3^x$

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \, \left( a^x \right) = a^x\,\ln{(a)} \end{align*}$

Proof:

$\displaystyle \begin{align*} y &= a^x \\ \ln{(y)} &= \ln{ \left( a^x \right) } \\ \ln{(y)} &= x\ln{(a)} \\ \frac{\mathrm{d}}{\mathrm{d}x} \, \left[ \ln{(y)} \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \, \left[ x\ln{(a)} \right] \\ \frac{\mathrm{d}}{\mathrm{d}y} \, \left[ \ln{(y)} \right] \, \frac{\mathrm{d}}{\mathrm{d}x} \, \left( y \right) &= \ln{(a)} \\ \frac{1}{y}\,\frac{\mathrm{d}y}{\mathrm{d}x} &= \ln{(a)} \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= y\ln{(a)} \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= a^x\,\ln{(a)} \end{align*}$

Q.E.D.
 
Hi everybody If we have not any answers for critical points after first partial derivatives equal to zero, how can we continue to find local MAX, local MIN and Saddle point?. For example: Suppose we have below equations for first partial derivatives: ∂ƒ/∂x = y + 5 , ∂ƒ/∂y = 2z , ∂ƒ/∂z = y As you can see, for ∇ƒ= 0 , there are not any answers (undefined)
Back
Top