Vacuum force factors (vacuum created by a "flow through" liquid)

Click For Summary
SUMMARY

The discussion centers on the factors influencing vacuum creation in a system where a liquid flows through a large diameter container, exerting suction on a smaller diameter input tube. Key conclusions indicate that the depth and density of the liquid, along with hydrostatic pressure, are critical in determining the vacuum level, while the surface area of the container walls is not significant. The vacuum is ultimately limited by atmospheric pressure and the vapor pressure of the liquid involved.

PREREQUISITES
  • Understanding of hydrostatic pressure principles
  • Familiarity with fluid dynamics concepts
  • Knowledge of atmospheric pressure effects on liquids
  • Basic grasp of vacuum systems and their mechanics
NEXT STEPS
  • Research hydrostatic pressure calculations in fluid systems
  • Explore the relationship between liquid density and vacuum generation
  • Study the effects of atmospheric pressure on liquid behavior in vacuum systems
  • Learn about the principles of fluid dynamics in hydraulic systems
USEFUL FOR

Engineers, physicists, and students studying fluid dynamics, as well as professionals involved in designing vacuum systems and hydraulic applications.

Ralphamale01
Messages
3
Reaction score
0
TL;DR
How is vacuum related to surface area?
Greetings all,

I'm new here and hope I'm asking this in the correct thread. So, the question is; where you have a vacuum created by a "flow through" liquid witin a large diameter container exerting suction force upon a smaller diameter input tube submerged in a liquid, does the surface area of the container determine how much vacuum is developed, or is the depth (weight) of liquid in container an equal, greater or minimal factor? Please see attached sketch. Thank in advance for any help.
 

Attachments

  • pic 01.gif
    pic 01.gif
    2.5 KB · Views: 189
Physics news on Phys.org
Welcome to PF.

A vacuum is limited by atmospheric pressure, and the vapour pressure of the liquid.

The area of the wall is NOT important, because pressure is a force per area.

The most important thing is the depth, density and hydrostatic pressure. That is the force of liquid per unit area, which increases with depth.
https://en.wikipedia.org/wiki/Hydrostatics#Pressure_in_fluids_at_rest
 
Baluncore said:
Welcome to PF.

A vacuum is limited by atmospheric pressure, and the vapour pressure of the liquid.

The area of the wall is NOT important, because pressure is a force per area.

The most important thing is the depth, density and hydrostatic pressure. That is the force of liquid per unit area, which increases with depth.
https://en.wikipedia.org/wiki/Hydrostatics#Pressure_in_fluids_at_rest
Understood, Thank You!
 
In hydraulics, life is very easy because the pressure varies within the liquid simply in proportion to the depth.
So in your case, as liquid flows out the tank, the air layer gets expanded, its pressure reduces and water is "sucked" up the tube. This can continue until the depth of water in the pipe matches the depth of water in the tank.
The pressure in the air pocket will have reduced by the depth x density of liquid, so now the atmospheric pressure is just enough to stop the liquid pushing out of the tank and to support the liquid in the tube.

As an interesting (IMO) sidenote, if there had not been any air pocket at all - the pipe and tank had started completely filled with liquid - then the liquid would not drain out of the tank at the bottom, rather the liquid would flow down the pipe. Air would enter the tank from below until it had filled the horizontal pipe and enough of the vertical pipe to equalise the depths in pipe and tank.
 
Merlin3189 said:
In hydraulics, life is very easy because the pressure varies within the liquid simply in proportion to the depth.
So in your case, as liquid flows out the tank, the air layer gets expanded, its pressure reduces and water is "sucked" up the tube. This can continue until the depth of water in the pipe matches the depth of water in the tank.
The pressure in the air pocket will have reduced by the depth x density of liquid, so now the atmospheric pressure is just enough to stop the liquid pushing out of the tank and to support the liquid in the tube.

As an interesting (IMO) sidenote, if there had not been any air pocket at all - the pipe and tank had started completely filled with liquid - then the liquid would not drain out of the tank at the bottom, rather the liquid would flow down the pipe. Air would enter the tank from below until it had filled the horizontal pipe and enough of the vertical pipe to equalise the depths in pipe and tank.
Thank you Merlin for your kind reply!
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K