I Van der Waals attractive force: Why don't the imbalances average out?

AI Thread Summary
The discussion focuses on the transient shift in electron density that leads to Van der Waals forces, which occur at distances of 0.4 to 0.6 nanometers between atoms. This shift creates a temporary charge that can attract or repel nearby atoms. The average interactions are considered through the sum of various strengths based on angles and distances. When two close spheres experience polarization, the induced charges lead to an attraction between them. The concept of induction is highlighted as a key factor in understanding these interactions.
nomadreid
Gold Member
Messages
1,748
Reaction score
243
TL;DR Summary
When a van der Waals force between two objects is attractive (before getting too close), it is due to the variable distribution of electrical charge between the molecules. But why wouldn't this variation average out (+ + /+ -/- +/- -) to give zero?
The summary refers, for example, to the Wikipedia explanation
"The force results from a transient shift in electron density. Specifically, the electron density may temporarily shift more greatly to one side of the nucleus. This generates a transient charge to which a nearby atom can be either attracted or repelled."
https://en.wikipedia.org/wiki/Van_der_Waals_force

(for a distance between atoms of between 0.4 to 0.6 nanometers, as explained in that article)

Also, when I speak of the average (+ + /+ -/- +/- -) , this would include the sum (integral) of all the different strengths according to the angles, distances, etc. But the idea is still the same.
 
Physics news on Phys.org
Consider two close spheres, (±) (±). One becomes momentarily polarised, +()– (±). The other sphere then takes an induced polarisation in the same direction, +()– +()–. The closest points on the spheres have opposite charge so attraction dominates.
 
Thank you, Baluncore. I had not considered induction. Question answered! :smile:
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
I passed a motorcycle on the highway going the opposite direction. I know I was doing 125/km/h. I estimated that the frequency of his motor dropped by an entire octave, so that's a doubling of the wavelength. My intuition is telling me that's extremely unlikely. I can't actually calculate how fast he was going with just that information, can I? It seems to me, I have to know the absolute frequency of one of those tones, either shifted up or down or unshifted, yes? I tried to mimic the...

Similar threads

Back
Top