I Van der Waals attractive force: Why don't the imbalances average out?

AI Thread Summary
The discussion focuses on the transient shift in electron density that leads to Van der Waals forces, which occur at distances of 0.4 to 0.6 nanometers between atoms. This shift creates a temporary charge that can attract or repel nearby atoms. The average interactions are considered through the sum of various strengths based on angles and distances. When two close spheres experience polarization, the induced charges lead to an attraction between them. The concept of induction is highlighted as a key factor in understanding these interactions.
nomadreid
Gold Member
Messages
1,748
Reaction score
243
TL;DR Summary
When a van der Waals force between two objects is attractive (before getting too close), it is due to the variable distribution of electrical charge between the molecules. But why wouldn't this variation average out (+ + /+ -/- +/- -) to give zero?
The summary refers, for example, to the Wikipedia explanation
"The force results from a transient shift in electron density. Specifically, the electron density may temporarily shift more greatly to one side of the nucleus. This generates a transient charge to which a nearby atom can be either attracted or repelled."
https://en.wikipedia.org/wiki/Van_der_Waals_force

(for a distance between atoms of between 0.4 to 0.6 nanometers, as explained in that article)

Also, when I speak of the average (+ + /+ -/- +/- -) , this would include the sum (integral) of all the different strengths according to the angles, distances, etc. But the idea is still the same.
 
Physics news on Phys.org
Consider two close spheres, (±) (±). One becomes momentarily polarised, +()– (±). The other sphere then takes an induced polarisation in the same direction, +()– +()–. The closest points on the spheres have opposite charge so attraction dominates.
 
Thank you, Baluncore. I had not considered induction. Question answered! :smile:
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...

Similar threads

Back
Top