Variable pitch spring calculations

AI Thread Summary
Calculating the spring constant of a variable pitch spring under compression is complex due to the changing stiffness as coils become inactive. The spring's effective stiffness increases with compression, necessitating a specific equation to determine the new spring constant after compression by a distance x. Resources such as academic papers on variable stiffness coil springs, particularly in vehicle applications, can provide insights and methodologies for these calculations. The discussion emphasizes the need for precise formulas to account for the unique behavior of variable pitch springs. Understanding these calculations is crucial for optimizing designs in engineering applications.
Malaps
Messages
1
Reaction score
0
Hi,
does anyone know how to calculate the current spring constant of a variable pitch spring when under compression. Since some of its coils get inactive when compressed the stiffness is increasing and consequently “k” is changing as well, is there an equation I can use to calculate the new spring value after the spring is compressed by a distance x?
 
Engineering news on Phys.org
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top