A Variation of Energy for Dielectrics (Zangwill's Electrodynamics)

AI Thread Summary
The discussion centers on confusion regarding the variation of total energy in dielectrics as presented in Zangwill's "Modern Electrodynamics," specifically in section 6.7.1. The user questions the validity of the equation for the electric field E in relation to the displacement field D, noting that it seems applicable only under constant conditions, which is not typically the case. They express frustration with the clarity of Zangwill's explanations, suggesting that simpler derivations can be found in other textbooks. Despite some initial positive feedback about Zangwill's clarity compared to Jackson's work, the user ultimately finds Zangwill's treatment of the subject less accessible. The discussion highlights the challenges of self-studying complex topics in electrodynamics.
pherytic
Messages
7
Reaction score
0
Hello PhysicsForums community,

I have been reading through Zangwill's Modern Electrodynamics all on my own, and I've just joined here hoping I can post some questions that come up for me. To start, I am confused about something in section 6.7.1, concerning the variation of total energy U of a dielectric in the presence of a charged conductor. This is given by (6.87)

$$\delta U = \int d^3 r \, \vec E \cdot \delta \vec D$$

where E is the total electric field, D is the auxiliary/displacement field.

Then, the books says (6.93)

$$ \vec E = 1/V(∂U/∂ \vec D)$$

I understand (ignoring any center of mass dependence) that using the logic of total differentials I can write

$$\delta U = (∂U/∂ \vec D) \cdot \delta \vec D$$

So it follows that

$$\int d^3 r \, \vec E \cdot \delta \vec D = (∂U/∂ \vec D) \cdot \delta \vec D$$

But the given equation for E only seems valid if E and D are constant over the volume, which isn't generally true. What am I misunderstanding? How does the equation for E follow?

Thanks for any guidance.
 
Physics news on Phys.org
I have looked at my copy of Zangwill. Section 6.7.1 is confused, confusing, and should not be in a textbook.
I have seen simple straightforward derivations of his equation 6.94 in many textbooks. Just look at any other book. Zangwill is not a book you should read or try to understand by yourself.
 
Meir Achuz said:
I have looked at my copy of Zangwill. Section 6.7.1 is confused, confusing, and should not be in a textbook.
I have seen simple straightforward derivations of his equation 6.94 in many textbooks. Just look at any other book. Zangwill is not a book you should read or try to understand by yourself.

I got the opposite advice before I started - that Zangwill was better/clearer than Jackson, and now I am six chapters in (to be fair I can follow ~90% of it without issues).

Also, I was hoping to understand 6.93 (electric field in terms of partial derivative of U) not 6.94.
 
Zangwill is not a bad book, but compared to Jackson...
 
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
I was using the Smith chart to determine the input impedance of a transmission line that has a reflection from the load. One can do this if one knows the characteristic impedance Zo, the degree of mismatch of the load ZL and the length of the transmission line in wavelengths. However, my question is: Consider the input impedance of a wave which appears back at the source after reflection from the load and has traveled for some fraction of a wavelength. The impedance of this wave as it...
Back
Top