voko
- 6,053
- 391
For any system where kinetic energy is ## T = \frac {mv^2}{2} ## and potential energy is some ## \Pi(x) ##, so that ## \Pi(0) ## is a local minimum, there is an oscillatory mode in certain region close to ## x = 0 ##, and, if ## \Pi(x) ## even, there is some ## A ## the amplitude.
For such systems, the equation of motion is $$ v = \sqrt { \frac 2 m (\Pi(A) - \Pi(x)) } $$
If ## v = \dot{x} \sqrt {1 + 9x^4} ## and ## \Pi(x) = mg|x|^3 ##, the equation is $$ \dot{x} \sqrt {1 + 9x^4} = \sqrt { 2g (A^3 - |x|^3) } $$ or $$ \dot{x} \sqrt { \frac {1 + 9x^4} { 2g (A^3 - |x|^3) } } = 1 $$ yielding $$ \int_0^A \sqrt { \frac {1 + 9x^4} { 2g (A^3 - |x|^3) } } dx = \int_0^{T/4} dt = \frac T 4 $$
For such systems, the equation of motion is $$ v = \sqrt { \frac 2 m (\Pi(A) - \Pi(x)) } $$
If ## v = \dot{x} \sqrt {1 + 9x^4} ## and ## \Pi(x) = mg|x|^3 ##, the equation is $$ \dot{x} \sqrt {1 + 9x^4} = \sqrt { 2g (A^3 - |x|^3) } $$ or $$ \dot{x} \sqrt { \frac {1 + 9x^4} { 2g (A^3 - |x|^3) } } = 1 $$ yielding $$ \int_0^A \sqrt { \frac {1 + 9x^4} { 2g (A^3 - |x|^3) } } dx = \int_0^{T/4} dt = \frac T 4 $$