Vector Field Transformation to Spherical Coordinates

Click For Summary
The discussion revolves around transforming a vector field from Cartesian to spherical coordinates, specifically focusing on the vector field given by a textbook problem. The user successfully derives the transformation equations and scalar functions but encounters a discrepancy with the textbook's answer for the radial component, \(a_{r}\). After reviewing the calculations, it is suggested that the textbook's answer may contain a typographical error, as the derived expression does not match and appears dimensionally incorrect. The consensus is that the user's calculations are correct, and the issue lies with the textbook's representation of \(a_{r}\).
Teclis
Messages
25
Reaction score
2
Homework Statement
Formulate the vector field

$$
\mathbf{\overrightarrow{a}} = x_{3}\mathbf{\hat{e_{1}}} + 2x_{1}\mathbf{\hat{e_{2}}} + x_{2}\mathbf{\hat{e_{3}}}

$$

in spherical coordinates.
Relevant Equations
$$
\begin{bmatrix}
\hat{e_{r}} \\
\hat{e_{\upsilon}} \\
\hat{e_{\phi}}
\end{bmatrix} = \begin{bmatrix}
\sin\upsilon\cos\phi &\sin\upsilon\sin\phi & \cos\upsilon \\
\cos\upsilon\cos\phi & \cos\upsilon\sin\phi & -\sin\upsilon \\
-\sin\phi & \cos\phi & 0
\end{bmatrix}
\begin{bmatrix}
\hat{e_{x}} \\
\hat{e_{y}} \\
\hat{e_{z}}
\end{bmatrix}
$$

and

$$
\begin{bmatrix}
\hat{e_{x}} \\
\hat{e_{y}} \\
\hat{e_{z}}
\end{bmatrix} = \begin{bmatrix}
\sin\upsilon\cos\phi &\cos\upsilon\cos\phi & -\sin\phi \\
\sin\upsilon\sin\phi & \cos\upsilon\sin\phi & \cos\phi \\
\cos\upsilon & -\sin\upsilon & 0
\end{bmatrix}
\begin{bmatrix}
\hat{e_{r}} \\
\hat{e_{\upsilon}} \\
\hat{e_{\phi}}
\end{bmatrix}
$$
I am trying to solve the following problem from my textbook:

Formulate the vector field

$$
\mathbf{\overrightarrow{a}} = x_{3}\mathbf{\hat{e_{1}}} + 2x_{1}\mathbf{\hat{e_{2}}} + x_{2}\mathbf{\hat{e_{3}}}
$$

in spherical coordinates.My solution is the following:

For the unit vectors I use the following matrix equations:
$$
\begin{bmatrix}
\hat{e_{r}} \\
\hat{e_{\upsilon}} \\
\hat{e_{\phi}}
\end{bmatrix} = \begin{bmatrix}
\sin\upsilon\cos\phi &\sin\upsilon\sin\phi & \cos\upsilon \\
\cos\upsilon\cos\phi & \cos\upsilon\sin\phi & -\sin\upsilon \\
-\sin\phi & \cos\phi & 0
\end{bmatrix}
\begin{bmatrix}
\hat{e_{x}} \\
\hat{e_{y}} \\
\hat{e_{z}}
\end{bmatrix}
$$

and

$$
\begin{bmatrix}
\hat{e_{x}} \\
\hat{e_{y}} \\
\hat{e_{z}}
\end{bmatrix} = \begin{bmatrix}
\sin\upsilon\cos\phi &\cos\upsilon\cos\phi & -\sin\phi \\
\sin\upsilon\sin\phi & \cos\upsilon\sin\phi & \cos\phi \\
\cos\upsilon & -\sin\upsilon & 0
\end{bmatrix}
\begin{bmatrix}
\hat{e_{r}} \\
\hat{e_{\upsilon}} \\
\hat{e_{\phi}}
\end{bmatrix}
$$

Transforming the scalar functions into spherical coordinates I have the following equation:

$$
\mathbf{\overrightarrow{a}} = r\cos\upsilon\hspace{1mm}\mathbf{\hat{e_{1}}} + 2r\sin\upsilon\cos\phi \hspace{1mm} \mathbf{\hat{e_{2}}} + r\sin\upsilon\sin\phi \hspace{1mm}\mathbf{\hat{e_{3}}}
$$

Substituting the values for the standard basis vectors and rearranging to the following form

$$
\mathbf{\overrightarrow{a}} = a_{r}\mathbf{\hat{e_{r}}} + a_{\upsilon}\mathbf{\hat{e_{\upsilon}}} + a_{\phi}\mathbf{\hat{e_{\phi}}}
$$

I arrive at

$$
\mathbf{\overrightarrow{a}} = r \cos{\upsilon}(\sin{\upsilon}\cos{\phi} \hspace{1mm}\mathbf{\hat{e_{r}}}+ \cos{\upsilon} \cos{\phi} \hspace{1mm} \mathbf{\hat{e_{\upsilon}}}- \sin{\phi} \hspace{1mm} \mathbf{\hat{e_{\phi}}})+ \\
\hspace{25mm}2r \sin{\upsilon} \cos{\phi}( \sin{\upsilon} \sin{\phi} \hspace{1mm} \mathbf{\hat{e_{r}}}+ \cos{\upsilon} \sin{\phi} \hspace{1mm} \mathbf{\hat{e_{\upsilon}}}+ \cos{\phi} \hspace{1mm} \mathbf{\hat{e{\phi}}}) + \\
\hspace{1mm}r \sin{\upsilon} \sin{\phi} ( \cos{\upsilon} \hspace{1mm} \mathbf{\hat{e_{r}}}- \sin{\upsilon} \hspace{1mm} \mathbf{\hat{e_{\upsilon}}})
$$

and solving for the scalar functions

$$
a_{r} = r\cos\upsilon \sin\upsilon \cos \phi + 2r \sin^2{ \upsilon} \cos \phi \sin \phi + r \sin \upsilon \sin \phi \cos \upsilon
$$

$$
a_{\upsilon} = r \cos^2 \upsilon \cos \phi + 2r \sin \upsilon \cos \phi \cos \upsilon \sin \phi -r \sin^2 \upsilon \sin \phi
$$

$$
a_{\phi} = 2r \sin \upsilon \cos^2 \phi - r \cos \upsilon \sin \phi
$$

All my answers match those given in the back of the textbook except for ##a_{r}## which is given as

$$
a_{r} = \cos \phi + r \sin \upsilon \cos \upsilon \sin \phi
$$

I have tried different trigonometric identities but am unable to rearrange my solution for ##a_{r}## to match the answer given in the text. Could someone please point out the error in my calculations or confirm for me that the answer provided by the textbook is incorrect?
 
Last edited:
Physics news on Phys.org
I found only one "typo" that didn't propagate: It should say ## a=...r \sin{v} \, sin{\phi} \, e_3 ## in the middle of the page, with ## \sin{\phi} ##. I didn't check everything, but I think your result might be correct.
 
  • Like
Likes Teclis
Charles Link said:
I found only one "typo" that didn't propagate: It should say ## a=...r \sin{v} \, sin{\phi} \, e_3 ## in the middle of the page, with ## \sin{\phi} ##. I didn't check everything, but I think your result might be correct.
Thanks, you are correct it is a typo. I do in fact have ##\sin{\phi}## in my paper calculations and not ##\cos{\phi}##
 
  • Like
Likes Charles Link
Teclis said:
$$
a_{r} = r\cos\upsilon \sin\upsilon \cos \phi + 2r \sin^2{ \upsilon} \cos \phi \sin \phi + r \sin \upsilon \sin \phi \cos \upsilon
$$
All my answers match those given in the back of the textbook except for ##a_{r}## which is given as
$$
a_{r} = \cos \phi + r \sin \upsilon \cos \upsilon \sin \phi
$$
Your answer can be written (over two lines) as
$$
a_{r} = r\cos\upsilon \sin\upsilon \cos \phi + 2r \sin^2{ \upsilon}\sin \phi $$ $$\cos \phi+ r \sin \upsilon \cos \upsilon \sin \phi
$$
Notice something?
 
  • Like
Likes Charles Link
haruspex said:
Your answer can be written (over two lines) as
$$
a_{r} = r\cos\upsilon \sin\upsilon \cos \phi + 2r \sin^2{ \upsilon}\sin \phi $$ $$\cos \phi+ r \sin \upsilon \cos \upsilon \sin \phi
$$
Notice something?

Yes, so you think the answer in the Textbook has just been unintentionally truncated?
 
  • Like
Likes Charles Link
Teclis said:
Yes, so you think the answer in the Textbook has just been unintentionally truncated?
Looks like it. What's left is not even dimensionally correct.
 
  • Like
Likes Charles Link
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
33
Views
4K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K