Vector Field Transformation to Spherical Coordinates

Click For Summary
SUMMARY

The discussion centers on transforming the vector field $$\mathbf{\overrightarrow{a}} = x_{3}\mathbf{\hat{e_{1}}} + 2x_{1}\mathbf{\hat{e_{2}}} + x_{2}\mathbf{\hat{e_{3}}}$$ into spherical coordinates. The transformation utilizes matrix equations for unit vectors and results in scalar functions for $$a_{r}$$, $$a_{\upsilon}$$, and $$a_{\phi}$$. The user identifies a discrepancy between their calculated $$a_{r}$$ and the textbook's answer, concluding that the textbook likely contains a typographical error that affects the dimensional correctness of the solution.

PREREQUISITES
  • Understanding of vector fields and their representations
  • Familiarity with spherical coordinates and transformations
  • Knowledge of matrix operations for vector transformations
  • Proficiency in trigonometric identities and their applications
NEXT STEPS
  • Study the derivation of spherical coordinate transformations in vector calculus
  • Review matrix representation of vector transformations
  • Explore common typographical errors in mathematical textbooks
  • Practice solving vector field problems using different coordinate systems
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with vector fields and coordinate transformations, particularly those seeking to verify their solutions against textbook examples.

Teclis
Messages
25
Reaction score
2
Homework Statement
Formulate the vector field

$$
\mathbf{\overrightarrow{a}} = x_{3}\mathbf{\hat{e_{1}}} + 2x_{1}\mathbf{\hat{e_{2}}} + x_{2}\mathbf{\hat{e_{3}}}

$$

in spherical coordinates.
Relevant Equations
$$
\begin{bmatrix}
\hat{e_{r}} \\
\hat{e_{\upsilon}} \\
\hat{e_{\phi}}
\end{bmatrix} = \begin{bmatrix}
\sin\upsilon\cos\phi &\sin\upsilon\sin\phi & \cos\upsilon \\
\cos\upsilon\cos\phi & \cos\upsilon\sin\phi & -\sin\upsilon \\
-\sin\phi & \cos\phi & 0
\end{bmatrix}
\begin{bmatrix}
\hat{e_{x}} \\
\hat{e_{y}} \\
\hat{e_{z}}
\end{bmatrix}
$$

and

$$
\begin{bmatrix}
\hat{e_{x}} \\
\hat{e_{y}} \\
\hat{e_{z}}
\end{bmatrix} = \begin{bmatrix}
\sin\upsilon\cos\phi &\cos\upsilon\cos\phi & -\sin\phi \\
\sin\upsilon\sin\phi & \cos\upsilon\sin\phi & \cos\phi \\
\cos\upsilon & -\sin\upsilon & 0
\end{bmatrix}
\begin{bmatrix}
\hat{e_{r}} \\
\hat{e_{\upsilon}} \\
\hat{e_{\phi}}
\end{bmatrix}
$$
I am trying to solve the following problem from my textbook:

Formulate the vector field

$$
\mathbf{\overrightarrow{a}} = x_{3}\mathbf{\hat{e_{1}}} + 2x_{1}\mathbf{\hat{e_{2}}} + x_{2}\mathbf{\hat{e_{3}}}
$$

in spherical coordinates.My solution is the following:

For the unit vectors I use the following matrix equations:
$$
\begin{bmatrix}
\hat{e_{r}} \\
\hat{e_{\upsilon}} \\
\hat{e_{\phi}}
\end{bmatrix} = \begin{bmatrix}
\sin\upsilon\cos\phi &\sin\upsilon\sin\phi & \cos\upsilon \\
\cos\upsilon\cos\phi & \cos\upsilon\sin\phi & -\sin\upsilon \\
-\sin\phi & \cos\phi & 0
\end{bmatrix}
\begin{bmatrix}
\hat{e_{x}} \\
\hat{e_{y}} \\
\hat{e_{z}}
\end{bmatrix}
$$

and

$$
\begin{bmatrix}
\hat{e_{x}} \\
\hat{e_{y}} \\
\hat{e_{z}}
\end{bmatrix} = \begin{bmatrix}
\sin\upsilon\cos\phi &\cos\upsilon\cos\phi & -\sin\phi \\
\sin\upsilon\sin\phi & \cos\upsilon\sin\phi & \cos\phi \\
\cos\upsilon & -\sin\upsilon & 0
\end{bmatrix}
\begin{bmatrix}
\hat{e_{r}} \\
\hat{e_{\upsilon}} \\
\hat{e_{\phi}}
\end{bmatrix}
$$

Transforming the scalar functions into spherical coordinates I have the following equation:

$$
\mathbf{\overrightarrow{a}} = r\cos\upsilon\hspace{1mm}\mathbf{\hat{e_{1}}} + 2r\sin\upsilon\cos\phi \hspace{1mm} \mathbf{\hat{e_{2}}} + r\sin\upsilon\sin\phi \hspace{1mm}\mathbf{\hat{e_{3}}}
$$

Substituting the values for the standard basis vectors and rearranging to the following form

$$
\mathbf{\overrightarrow{a}} = a_{r}\mathbf{\hat{e_{r}}} + a_{\upsilon}\mathbf{\hat{e_{\upsilon}}} + a_{\phi}\mathbf{\hat{e_{\phi}}}
$$

I arrive at

$$
\mathbf{\overrightarrow{a}} = r \cos{\upsilon}(\sin{\upsilon}\cos{\phi} \hspace{1mm}\mathbf{\hat{e_{r}}}+ \cos{\upsilon} \cos{\phi} \hspace{1mm} \mathbf{\hat{e_{\upsilon}}}- \sin{\phi} \hspace{1mm} \mathbf{\hat{e_{\phi}}})+ \\
\hspace{25mm}2r \sin{\upsilon} \cos{\phi}( \sin{\upsilon} \sin{\phi} \hspace{1mm} \mathbf{\hat{e_{r}}}+ \cos{\upsilon} \sin{\phi} \hspace{1mm} \mathbf{\hat{e_{\upsilon}}}+ \cos{\phi} \hspace{1mm} \mathbf{\hat{e{\phi}}}) + \\
\hspace{1mm}r \sin{\upsilon} \sin{\phi} ( \cos{\upsilon} \hspace{1mm} \mathbf{\hat{e_{r}}}- \sin{\upsilon} \hspace{1mm} \mathbf{\hat{e_{\upsilon}}})
$$

and solving for the scalar functions

$$
a_{r} = r\cos\upsilon \sin\upsilon \cos \phi + 2r \sin^2{ \upsilon} \cos \phi \sin \phi + r \sin \upsilon \sin \phi \cos \upsilon
$$

$$
a_{\upsilon} = r \cos^2 \upsilon \cos \phi + 2r \sin \upsilon \cos \phi \cos \upsilon \sin \phi -r \sin^2 \upsilon \sin \phi
$$

$$
a_{\phi} = 2r \sin \upsilon \cos^2 \phi - r \cos \upsilon \sin \phi
$$

All my answers match those given in the back of the textbook except for ##a_{r}## which is given as

$$
a_{r} = \cos \phi + r \sin \upsilon \cos \upsilon \sin \phi
$$

I have tried different trigonometric identities but am unable to rearrange my solution for ##a_{r}## to match the answer given in the text. Could someone please point out the error in my calculations or confirm for me that the answer provided by the textbook is incorrect?
 
Last edited:
Physics news on Phys.org
I found only one "typo" that didn't propagate: It should say ## a=...r \sin{v} \, sin{\phi} \, e_3 ## in the middle of the page, with ## \sin{\phi} ##. I didn't check everything, but I think your result might be correct.
 
  • Like
Likes   Reactions: Teclis
Charles Link said:
I found only one "typo" that didn't propagate: It should say ## a=...r \sin{v} \, sin{\phi} \, e_3 ## in the middle of the page, with ## \sin{\phi} ##. I didn't check everything, but I think your result might be correct.
Thanks, you are correct it is a typo. I do in fact have ##\sin{\phi}## in my paper calculations and not ##\cos{\phi}##
 
  • Like
Likes   Reactions: Charles Link
Teclis said:
$$
a_{r} = r\cos\upsilon \sin\upsilon \cos \phi + 2r \sin^2{ \upsilon} \cos \phi \sin \phi + r \sin \upsilon \sin \phi \cos \upsilon
$$
All my answers match those given in the back of the textbook except for ##a_{r}## which is given as
$$
a_{r} = \cos \phi + r \sin \upsilon \cos \upsilon \sin \phi
$$
Your answer can be written (over two lines) as
$$
a_{r} = r\cos\upsilon \sin\upsilon \cos \phi + 2r \sin^2{ \upsilon}\sin \phi $$ $$\cos \phi+ r \sin \upsilon \cos \upsilon \sin \phi
$$
Notice something?
 
  • Like
Likes   Reactions: Charles Link
haruspex said:
Your answer can be written (over two lines) as
$$
a_{r} = r\cos\upsilon \sin\upsilon \cos \phi + 2r \sin^2{ \upsilon}\sin \phi $$ $$\cos \phi+ r \sin \upsilon \cos \upsilon \sin \phi
$$
Notice something?

Yes, so you think the answer in the Textbook has just been unintentionally truncated?
 
  • Like
Likes   Reactions: Charles Link
Teclis said:
Yes, so you think the answer in the Textbook has just been unintentionally truncated?
Looks like it. What's left is not even dimensionally correct.
 
  • Like
Likes   Reactions: Charles Link

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
33
Views
5K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K