Vector geometry - Intersection of lines

  • Thread starter Keshroom
  • Start date
  • #1
25
0

Homework Statement


I have 2 parametric vector equations (of a line)

r(t) = (2,-4,4) + t(1,-3,4)
s(t) = (1,-1,0) + t(2,-1,1)

how do i find the coordinates for which they intersect each other?
The answers is (1,-1,0)


Homework Equations



x=a+λv, for some λ in ℝ (parametric vector form of line)

The Attempt at a Solution


As in high school, with the form y=mx+b i would make the 2 equations equal to each other, solve for x, then substitute back into either equations to find y.

I've tried making the (x,y,z) components equal to each other, solve for 't' and substitute back in but i can't get the answer in the back of the book

parametic equations
for r(t): x = 2+t, y= -4-3t, z= 4+4t
for s(t): x = 1+2t, y= -1-t, z= t

Now i did
2+t = 1+2t
t = 1

substituting back into x=2+t: x = 3

i did this for also y and x components and got (3, 1/2, -4/3)
hmmmm
I have a feeling that this method isnt correct :s
 

Answers and Replies

  • #2
Dick
Science Advisor
Homework Helper
26,263
619
Change the notation to
r(t) = (2,-4,4) + t(1,-3,4)
s(u) = (1,-1,0) + u(2,-1,1)
the parameters t and u don't have to be the same for the lines to intersect each other.
 
  • #3
25
0
Change the notation to
r(t) = (2,-4,4) + t(1,-3,4)
s(u) = (1,-1,0) + u(2,-1,1)
the parameters t and u don't have to be the same for the lines to intersect each other.

alright. Now how do i solve it?
 
  • #4
Dick
Science Advisor
Homework Helper
26,263
619
alright. Now how do i solve it?

The same way you tried before. Equate components of the vectors and solve them. Try it. The first component gives you 2+t=1+2u. Solve that for t and substitute into the rest.
 

Related Threads on Vector geometry - Intersection of lines

  • Last Post
Replies
5
Views
698
  • Last Post
Replies
5
Views
2K
Replies
2
Views
2K
  • Last Post
Replies
2
Views
5K
Replies
3
Views
11K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
4
Views
2K
Replies
8
Views
2K
Replies
2
Views
5K
  • Last Post
Replies
1
Views
808
Top