Vectors - Displacement to Accelleration

Click For Summary
SUMMARY

The discussion centers on calculating the magnitude of acceleration for an object defined by the position equations x=5t^3-6t^2 and y=3t^-1+4t^4 at t=1s. The correct second derivatives are ax=30t-12 and ay=8t, leading to ax=18 and ay=8 at t=1s. The resultant acceleration is calculated as approximately 19.69 m/s², which contradicts the provided answer of 57 m/s². The confusion arose from a misinterpretation of the equations, particularly the second derivative of the y component.

PREREQUISITES
  • Understanding of calculus, specifically differentiation and second derivatives
  • Familiarity with kinematic equations in physics
  • Knowledge of vector components in motion analysis
  • Proficiency in algebraic manipulation of equations
NEXT STEPS
  • Review the principles of differentiation in calculus
  • Study kinematic equations and their applications in physics
  • Learn how to derive second derivatives for motion equations
  • Explore vector analysis in two-dimensional motion
USEFUL FOR

Students studying physics, particularly those focusing on mechanics and motion analysis, as well as educators seeking to clarify concepts related to acceleration and displacement in kinematics.

cryodynamics
Messages
4
Reaction score
0

Homework Statement


An object moves with its position obeying x=5t^2-6t^2 and y=3t^-1+4t^4. What is the magnitude of its acceleration at t=1s;
a)57 m/s^2
b)34 m/s^2
c)26 m/s^2
d)44 m/s^2
e)0 m/s^2

Homework Equations


x=5t^3-6t^2
y=3t^-1+4t^4

The Attempt at a Solution


Second derivative of the displacement x is;
ax=30t-12 m/s^2
Second derivative of the displacement y is;
ay=8t m/s^2

t=1 -> ax
ax = 18

t=1 -> ay
ay = 8

Resultant acceleration = sqrt(18^2+8^2) = 19.69

Which is wrong according to the answer I found online which was a) 57 m/s^2. Anyone show me where I've messed up or is the answer I found wrong?
 
Last edited:
Physics news on Phys.org
cryodynamics said:

Homework Statement


An object moves with its position obeying x=5t^2-6t^2 and y=3t^-1+4t^4. What is the magnitude of its acceleration at t=1s;
a)57 m/s^2
b)34 m/s^2
c)26 m/s^2
d)44 m/s^2
e)0 m/s^2


Homework Equations


x=5t^2-6t^2
y=3t^-1+4t^4

The Attempt at a Solution


Second derivative of the displacement x is;
ax=30t-12 m/s^2
Second derivative of the displacement y is;
ay=8t m/s^2

t=1 -> ax
ax = 18

t=1 -> ay
ay = 8

Resultant acceleration = sqrt(18^2+8^2) = 19.69

Which is wrong according to the answer I found online which was a) 57 m/s^2. Anyone show me where I've messed up or is the answer I found wrong?

The x expressions don't match up, but I guess you actually meant x=5t^3-6t^2

I can't imagine what you thought the y expression was ??
 
PeterO said:
The x expressions don't match up, but I guess you actually meant x=5t^3-6t^2

I can't imagine what you thought the y expression was ??

Ahh yes sorry about that, I'll fix that up. What do you mean by 'I can't imagine what you thought the y expression was?' That equation for y is the exact one given?
 
Can you check that

x=5t^2-6t^2 and y=3t^-1+4t^4

are correct.
 
x=5t3-6t2
y=3t-1+4t4
Are the the correct equations given in the question.
 
cryodynamics said:
x=5t3-6t2
y=3t-1+4t4
Are the the correct equations given in the question.

OK .. if that is the expression for y, then 8t is not the second derivative.
 
PeterO said:
OK .. if that is the expression for y, then 8t is not the second derivative.

Ahh I got the answer this time, my problem was I thought I could simplify y=3t-1+4t4 to 4t3/3 I now realize what a rookie error that was lol. Thanks for your help everyone.
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 38 ·
2
Replies
38
Views
4K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
Replies
13
Views
2K