MHB Verify Algebraic Statement for Philosophy of Time Essay

musickps
Messages
2
Reaction score
0
I am not sure if this is the right thread, since I am new. Bump it if necessary.

I am currently writing an essay on revising the conventional A-series of time to account for relativity and simultaneity, among other problems. In the course of my argument, I have used an algebraic statement. I know that the organization is not up to convention, but this is a rough draft. I am just trying to verify that this is a true statement. I seem to remember some transitive property from my high school days that suggests that it is, but I want to make sure before my supervisor sees it! Thanks for the help!

Assuming
(1) all given variables represent non-zero integers and
(2) no integer in the addition operation appears more than once

-Let s represent the sum of following integers: m, n, x, p

If (s)(z) = y

then the following expressions must all be true:

(m)(z) ≠ y,
(n)(z) ≠y
(x)(z) ≠y.
(p)(z) ≠ y.



Mods: I was not sure where to post this since it is algebraic in nature but I am using it in a theoretical manuscript. Feel free to bump it wherever it belongs. Thanks for the help!
 
Mathematics news on Phys.org
Counterexample: $m=1, n=3, x=-2, p=-1$. Then $s=m+n+x+p=1$. We assume $sz=y$. But it is also true that $mz=y$. If you strengthen the first assumption to $m,n,x,p$ must all be strictly positive integers, then I think you could conclude what you want.
 
Thank you so much! Thanks to you, I have that essay under my belt; that was the last thing left to verify.

You have made Philosopher of Time very happy indeed. :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
6
Views
2K
Replies
2
Views
3K
Replies
3
Views
2K
Replies
9
Views
3K
Replies
3
Views
1K
Replies
8
Views
8K
Replies
9
Views
4K
Back
Top