FritoTaco
- 132
- 23
Homework Statement
Problem 1: csc(tan^{-1}\dfrac{x}{2})=\sqrt{\dfrac{x^{2}+4}{x}}
Problem 2: \sqrt{\dfrac{1-sinx}{1+sinx}}=\dfrac{|cosx|}{1+sinx}
Homework Equations
Quotient Identities
tan\theta=\dfrac{sin\theta}{cos\theta}
cos\theta=\dfrac{cos\theta}{sin\theta}
Pythagorean Identites
sin^{2}\theta+cos^{2}=1
cot^{2}\theta+1=csc^{2}\theta
tan^{2}+1=sec^{2}\theta
Recirpocal Identites
sin\theta=\dfrac{1}{csc\theta}
cos\theta=\dfrac{1}{sec\theta}
tan\theta=\dfrac{1}{cot\theta}
csc\theta=\dfrac{1}{sin\theta}
sec\theta=\dfrac{1}{cos\theta}
cot\theta=\dfrac{1}{tan\theta}
Cofunction Identities (maybe useful?)
sin(\dfrac{\pi}{2}-\theta)=cos\theta
cos(\dfrac{\pi}{2}-\theta)=sin\theta
tan(\dfrac{\pi}{2}-\theta)=cot\theta
csc(\dfrac{\pi}{2}-\theta)=sec\theta
sec(\dfrac{\pi}{2}-\theta)=csc\theta
cot(\dfrac{\pi}{2}-\theta)=tan\theta
Note: \sqrt{x^{2}}=|x|
The Attempt at a Solution
Problem 1: Any ideas on how to get started? I have no idea what to do with inverse tangent and that stupid x/2 and it makes me mad! I know I need some work for it to be a valid thread so here goes nothing.
csc(tan^{-1}\dfrac{x}{2})=\sqrt{\dfrac{x^{2}+4}{x}}
Maybe manipulate the left side?
csc(cot\theta)
...yup, I'm totally lost.
Problem 2:
\sqrt{\dfrac{1-sinx}{1+sinx}}=\dfrac{|cosx|}{1+sinx}
I manipulated the left side
\dfrac{\sqrt{1-sinx}}{\sqrt{1+sinx}}\cdot\dfrac{\sqrt{1-sinx}}{\sqrt{1-sinx}}
\dfrac{1-sinx}{\sqrt{(1+sinx)(1-sinx)}}
\dfrac{1-sinx}{\sqrt{(1+sin^{2}x)}} <--\sqrt{x^{2}}=|x|
\dfrac{1-sinx}{|cosx|}
\dfrac{|cosx|}{1+sinx} Am I allowed to just switch it around like that?
\dfrac{|cosx|}{1+sinx} = \dfrac{|cosx|}{1+sinx}