Imagine any point in a planar, two-dimensional coordinate system, except the origin that requires particular handling since the distance between the origin and the origin is zero and we cannot measure an angle between two lines of length zero.
So given any point ##z## in that grid, the coordinate system of the plane. How would you describe it to me if I asked you to show me a way from the origin to the point ##z##?
As I see it, you could either tell me to go ##a## units to the right and ##b## units to the top, which means in equations that ##z=(a,b)=a+ib## if we identify the plane with complex numbers, or you could tell me turn myself and look horizontally to the right, then turn myself by an angle of ##\varphi ## counterclockwise and walk ##r## units into the new direction, which means ##z=(a,b)= r\cdot e^{i \varphi }.##
##r=|z|=\sqrt{a^2+b^2}## (Pythagoras) and times ##e^{i \varphi }## is the turning from looking horizontally to looking towards ##z.##
There are several ways to see why times ##e^{i \varphi }## is a counterclockwise rotation of the point ##(r,0)## to the point ##(a,b).## One is to look at Euler's formula (as linked to twice in previous posts) or by the study of complex multiplication (see picture in post #59). The only ambiguity here is, that the vertical coordinate is once the second in ##(a,b),## the ##b## and at the same time identified with the complex number ##i b##. You can imagine this as units. We have the unit ##[1]## horizontally and the unit ## [\mathrm{i}]## vertically. We do not write the units in ##(a,b)## if we refer to a point on the grid, and do write the units if we identify such a point with a complex number: ##(a,b)=a+ i b.##