Virial Theorem for an expanding globular cluster

Click For Summary
SUMMARY

This discussion focuses on applying the virial theorem to analyze the dynamics of an expanding globular cluster, particularly in the context of gas and star interactions. The total mass of the system is represented as (1+f)M*, with gravitational potential energy calculated as Ω = -3G(1+f)²M*²/5r_c. The mean square speed of stars is derived as ⟨v²⟩ = 3G(1+f)²M*/(5r_c). The key question posed is determining the gas fraction f at which the cluster becomes disrupted due to gas expulsion from stellar winds and supernovae.

PREREQUISITES
  • Understanding of the virial theorem in astrophysics
  • Familiarity with gravitational potential energy calculations
  • Knowledge of stellar dynamics and gas interactions
  • Basic concepts of globular cluster structure and evolution
NEXT STEPS
  • Study the implications of the virial theorem in non-static systems
  • Research the effects of supernovae on star cluster dynamics
  • Explore methods for calculating gas fractions in astrophysical systems
  • Investigate numerical simulations of globular cluster evolution
USEFUL FOR

Astronomers, astrophysicists, and students studying stellar dynamics and the evolution of star clusters will benefit from this discussion.

Barbequeman
Messages
7
Reaction score
1
Homework Statement
You may make the assumption that the gas and stars are distributed as sphere of constant density and some finite radius rc. The total mass of the stars and of gas is different: assume that the total mass of the gas, Mg, is given by Mg = f M*, where M* is the total mass of the stars.

Start by assuming that the system overall is unrotating and in equilibrium. Calculate the kinetic energy of the stars in terms of rc, f, and M*. Therefore also calculate the total energy of the system.
Relevant Equations
2K+U=0 the basic equation for the virial theorem in a system which is unrotating and in equilibrium
I attached a file which shows my attempt to resolve this problem with the possible two pair interaction which gives us the kinetic energy of the cluster in an expanding system, at least I think so. But to be honest I´m more or less completely stuck with this question and I would be glad if somebody could explain me how to use the virial theorem in this special case.
 

Attachments

  • TEST.jpg
    TEST.jpg
    40.1 KB · Views: 138
  • Like
Likes   Reactions: berkeman
Physics news on Phys.org
The overall reasoning looks good but I'm unsure how the question is supposed to be interpreted. The total (gas + star) mass is ##(1+f)M^*## and it looks as if they'd like us to distribute that uniformly over a sphere of radius ##r_c##. That would have a gravitational potential energy of\begin{align*}
\Omega = \dfrac{-3G(1+f)^2 {M^*}^2}{5r_c}
\end{align*}Then, assuming the gas to have negligible kinetic energy would imply that the mean square speed ##\langle v^2 \rangle## of the stars is\begin{align*}
\langle v^2 \rangle = \dfrac{2T}{M^*} = \dfrac{-\Omega}{M^*} = \dfrac{3G(1+f)^2 M^*}{5r_c}
\end{align*}I don't know which way is right...
 
  • Like
Likes   Reactions: PhDeezNutz and Barbequeman
I think I resolved it with the help of my friend from the university to crack the kinetic energy question which is the
 

Attachments

  • Virial_Theorem_Mark.jpg
    Virial_Theorem_Mark.jpg
    20.2 KB · Views: 116
The next question would be how to resolve towards f, at what gas fraction f the cluster is disrupted

The question in according to our Book is
Now suppose that winds from young stars and supernovae explosions very rapidly (you can assume instantaneously) expel the gas from the system. At what gas fraction f is the cluster disrupted?

With best wishes and thank you for your help
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
0
Views
2K
  • · Replies 74 ·
3
Replies
74
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K