Why is temperature constant after gas has expanded?

Click For Summary
SUMMARY

The discussion centers on the thermodynamic behavior of an ideal gas as it expands from cylinder A into cylinder B. Participants agree that the system is thermally insulated, leading to no heat transfer, which implies that the internal energy remains constant. Consequently, since the internal energy of an ideal gas is solely dependent on temperature, the temperature remains constant throughout the expansion process. The conversation also touches on the implications of adiabatic processes and the conditions under which temperature can change, emphasizing that in this specific scenario, the gas does no work and thus maintains a constant temperature.

PREREQUISITES
  • Understanding of the First Law of Thermodynamics
  • Knowledge of ideal gas behavior and properties
  • Familiarity with adiabatic processes and their characteristics
  • Concept of thermal insulation and its effects on thermodynamic systems
NEXT STEPS
  • Study the implications of the First Law of Thermodynamics in closed systems
  • Explore the characteristics of adiabatic processes in ideal gases
  • Investigate the Maxwell-Boltzmann distribution and its relation to gas temperature
  • Examine real-world applications of thermodynamic principles in engineering
USEFUL FOR

Students of thermodynamics, physicists, engineers, and anyone interested in understanding the behavior of gases under varying conditions of pressure and volume.

  • #31
Steve4Physics said:
.... There is also the possibility of some sort of longitudinal wave being produced to complicate matters!
With the proper timing and velocity through the valve, an oscillation of pressure values could occur between both tanks, before pressure equalizes.

For the first cycle at least, low pressure inside the left A cylinder could lead to lower temperature in there, while simultaneously, the opposite happens inside the right B cylinder.

Please, see:
https://en.wikipedia.org/wiki/Kadenacy_effect

https://en.wikipedia.org/wiki/Expansion_chamber
 
Physics news on Phys.org
  • #32
vcsharp2003 said:
That's new to me but I can see how it makes complete sense in this situation. Thankyou.
@vcsharp2003, please note I edited Post #29 as I thought something I wrote wasn’t clear.

In a little more detail...

For an adiabatic compression or expansion of an ideal gas, the total kinetic energy of the particles changes if particles bounce off a moving wall. However that’s not the case in your Post #1 problem, so the total kinetic energy is constant in your problem.

(It's a useful exercise to think about how, say compressing a gas by pushing-in a piston, increases the kinetic energy of the gas particles. (You consider the behaviour of particles bouncing off a moving wall.).)
 
Last edited:
  • Like
Likes   Reactions: vcsharp2003 and Lnewqban
  • #33
Mass Balance: $$n_1+n_2=n_0$$where ##n_0## is the number of moles of gas initially in the left chamber, ##n_1## is the final number of moles of gas in the left chamber, and ##n_2## is the final number of moles in the right chamber. From the ideal gas law, this gives: $$\frac{PV}{RT_1}+\frac{PV}{RT_2}=\frac{P_0V}{RT_0}$$where P is the final pressure in both chambers, V is the volume of each of the two chambers, ##P_0## is the initial pressure in the left chamber, ##T_1## is the final temperature in the left chamber, ##T_2## is the final temperature in the right chamber, and ##T_0## is the initial temperature of the gas in the left chamber. So, $$\frac{T_0}{T_1}+\frac{T_0}{T_2}=\frac{P_0}{P}\tag{1}$$Energy Balance: $$\Delta U=n_1C_V(T-T_0)+n_2C_v(T_2-T_0)=0$$, or, combining with the ideal gas law:$$1-\frac{T_0}{T_1}+1-\frac{T_0}{T_2}=0$$or$$\frac{T_0}{T_1}+\frac{T_0}{T_2}=2\tag{2}$$So, combining Eqns. 1 and 2, we have $$P=\frac{P_0}{2}\tag{3}$$Thus, the final pressure in both chambers is half the initial pressure in the left chamber.

The gas finally remaining in the left chamber has experienced an adiabatic reversible expansion in gradually pushing the gas ahead of it into the stopcock, and into the right chamber. Thus, $$\frac{T_1}{T_0}=\left(\frac{P}{P_0}\right)^{\frac{\gamma-1}{\gamma}}=\left(\frac{1}{2}\right)^{\frac{\gamma-1}{\gamma}}\tag{4}$$Next, combining Eqns. 2 and 4 yields:$$\frac{T_2}{T_0}=\frac{1}{2-2^{\frac{\gamma-1}{\gamma}}}>1$$
 
  • Like
Likes   Reactions: Frabjous
  • #34
Given these results, what is the entropy change for this version of the problem and how does it compare quantitatively with the entropy change for the other version?
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
16
Views
4K
  • · Replies 12 ·
Replies
12
Views
7K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
10K
  • · Replies 4 ·
Replies
4
Views
5K