Wavefunction in a delta potential well

Click For Summary

Homework Help Overview

The discussion revolves around finding the wave function for a particle in a periodic delta function potential, specifically in the form of a given equation involving sine functions. The problem is situated within the context of quantum mechanics and wavefunctions.

Discussion Character

  • Exploratory, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants discuss various attempts to manipulate the wave function equation, including evaluating it at specific points and using trigonometric identities. There is mention of trying to equate terms and working backwards to simplify the expression.

Discussion Status

Some participants have suggested multiplying the wave function by a specific factor to facilitate simplification. There are ongoing attempts to expand and manipulate the resulting expressions, with no clear consensus on the most effective approach yet.

Contextual Notes

Participants are grappling with the complexity of the wave function and the relationships between different constants involved, indicating potential confusion about the setup and the definitions of variables.

1v1Dota2RightMeow
Messages
75
Reaction score
7

Homework Statement


Using the equations given, show that the wave function for a particle in the periodic delta function potential can be written in the form

##\psi (x) = C[\sin(kx) + e^{-iKa}\sin k(a-x)], \quad 0 \leq x \leq a##

Homework Equations


Given equations:

##\psi (x) =A\sin(kx) + B\cos(kx), \quad 0<x<a##
##A\sin(ka) = [e^{iKa} - \cos(ka)]B##

Note that ##k## and ##K## are different constants.

The Attempt at a Solution


I tried a bunch of stuff already but I can't seem to get to the answer.

Attempt 1. I evaluated ##\psi## at ##0## and at ##a## for both the final equation and the general equation and tried to see if I could come to some conclusion based on equating these, but no luck there.

Attempt 2. I tried working backwards and seeing if I could use the sine identity ##\sin(a-b) = \sin(a)\cos(b)-\cos(a)\sin(b)## but it only seems to make things more complicated.

Could someone just give me a hint?
 
Physics news on Phys.org
Try multiplying ##\psi(x)## by ##\frac{\sin ka}{\sin ka}##.
 
vela said:
Try multiplying ##\psi(x)## by ##\frac{\sin ka}{\sin ka}##.
I see 3 ways to do something with what you've suggested. Here is one attempt:

##\psi(x) = \frac{Asin(kx)sin(ka)+Bcos(kx)sin(ka)}{sin(ka)}##
##=Asin(kx) + \frac{B[(1/2)(sin(ka+kx)+sin(ka-kx))]}{sin(ka)}##
##=Asin(kx)+\frac{A}{2(e^{iKa}-cos(ka))}[sin(ka+kx)+sin(ka-kx)]##
##=Asin(kx)+\frac{e^{-iKa}A}{2(1-e^{-iKa}cos(ka))}[sin(ka+kx)+sin(ka-kx)]##

This would almost be great if it weren't for that ##sin(ka+kx)## term. I don't know what to do with it.
 
There's a reason I said to multiply ##\psi## by ##\frac{\sin ka}{\sin ka}## rather than just the last term. See what you can do with the first term.
 
vela said:
There's a reason I said to multiply ##\psi## by ##\frac{\sin ka}{\sin ka}## rather than just the last term. See what you can do with the first term.
I expanded it out to this, but nothing cancels nicely.

##\psi (x) = \frac{A(sin(kx)sin(ka)-cos(kx)cos(ka))}{sin(ka)}+\frac{B((1/2)(sin(kx)cos(ka)+cos(kx)sin(ka)-sin(kx-ka)))}{sin(ka)}##

Should I have gone a different route?
 

Similar threads

Replies
7
Views
2K
Replies
5
Views
3K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
16
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
1
Views
2K