Wavefunction of a space and spin rotated state

NiRK20
Messages
2
Reaction score
0
Homework Statement
Basically, I have the wavefunction of a particle with spin (not necessarly 1/2) given by ##\psi(\textbf{r}, m) = \psi _{m} (\textbf{r}) = \langle\textbf{r}, m|\psi \rangle##. My task is to find the wavefunction of a rotated state ##U(R)|\psi \rangle##, with ##U## being the product of a spacial rotation by a spin rotation.
Relevant Equations
-
Since ##U## is a space and spin rotation, it would be

$$U(R) = e^{-i\textbf{L}\cdot \hat{\textbf{n}}\phi/\hbar}\cdot e^{-i\textbf{S}\cdot \hat{\textbf{n}}\phi/\hbar}$$

And, then

$$\psi'(\textbf{r}, m) = \langle\textbf{r}, m|e^{-i\phi(\textbf{L} + \textbf{S}) \cdot \hat{\textbf{n}}/\hbar}|\psi \rangle = \sum_{m'}\int \langle\textbf{r}, m|e^{-i\phi(\textbf{L} + \textbf{S}) \cdot \hat{\textbf{n}}/\hbar}|\textbf{r}', m'\rangle\psi _{m'}(\textbf{r}') d^{3}r'$$

The problem is where to go from here (if this is right until now). There is a way to compute these matrix elements? Does ##|\textbf{r}\rangle## equals to the eigenkets of angular momentum ##|nlm\rangle##?
 
Physics news on Phys.org
It is difficult to answer because it depends on what is expected. Can you post the full text of the question?

NiRK20 said:
$$U(R) = e^{-i\textbf{L}\cdot \hat{\textbf{n}}\phi/\hbar}\cdot e^{-i\textbf{S}\cdot \hat{\textbf{n}}\phi/\hbar}$$
How does ##U(R)## become a function of ##\phi## only?

NiRK20 said:
Does ##|\textbf{r}\rangle## equals to the eigenkets of angular momentum ##|nlm\rangle##?
No, they are completely different. This is how you recover the wave function for a given ##n,l,m## from the ket:
$$
\psi_{n,l,m} (\mathbf{r}) = \braket{\mathbf{r} | nlm}
$$
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top