Wavefunction of a space and spin rotated state

NiRK20
Messages
2
Reaction score
0
Homework Statement
Basically, I have the wavefunction of a particle with spin (not necessarly 1/2) given by ##\psi(\textbf{r}, m) = \psi _{m} (\textbf{r}) = \langle\textbf{r}, m|\psi \rangle##. My task is to find the wavefunction of a rotated state ##U(R)|\psi \rangle##, with ##U## being the product of a spacial rotation by a spin rotation.
Relevant Equations
-
Since ##U## is a space and spin rotation, it would be

$$U(R) = e^{-i\textbf{L}\cdot \hat{\textbf{n}}\phi/\hbar}\cdot e^{-i\textbf{S}\cdot \hat{\textbf{n}}\phi/\hbar}$$

And, then

$$\psi'(\textbf{r}, m) = \langle\textbf{r}, m|e^{-i\phi(\textbf{L} + \textbf{S}) \cdot \hat{\textbf{n}}/\hbar}|\psi \rangle = \sum_{m'}\int \langle\textbf{r}, m|e^{-i\phi(\textbf{L} + \textbf{S}) \cdot \hat{\textbf{n}}/\hbar}|\textbf{r}', m'\rangle\psi _{m'}(\textbf{r}') d^{3}r'$$

The problem is where to go from here (if this is right until now). There is a way to compute these matrix elements? Does ##|\textbf{r}\rangle## equals to the eigenkets of angular momentum ##|nlm\rangle##?
 
Physics news on Phys.org
It is difficult to answer because it depends on what is expected. Can you post the full text of the question?

NiRK20 said:
$$U(R) = e^{-i\textbf{L}\cdot \hat{\textbf{n}}\phi/\hbar}\cdot e^{-i\textbf{S}\cdot \hat{\textbf{n}}\phi/\hbar}$$
How does ##U(R)## become a function of ##\phi## only?

NiRK20 said:
Does ##|\textbf{r}\rangle## equals to the eigenkets of angular momentum ##|nlm\rangle##?
No, they are completely different. This is how you recover the wave function for a given ##n,l,m## from the ket:
$$
\psi_{n,l,m} (\mathbf{r}) = \braket{\mathbf{r} | nlm}
$$
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top