MHB Wedge product and change of variables

Click For Summary
The discussion centers on proving the relationship between the wedge product of differentials under a change of variables defined by a $C^1$ map $\phi: \mathbb{R}^n \rightarrow \mathbb{R}^n$. It establishes that d$y_1 \wedge ... \wedge $d$y_n = (\det D\phi(x)) \cdot d$x_1 \wedge ... \wedge d$x_n$. The proof utilizes the chain rule to express d$y_i$ in terms of d$x_j$ and the Jacobian matrix $D\phi(x)$. By applying the distributive law of the wedge product, the final result emerges from summing over all permutations of the indices. This demonstrates the relationship without relying on the determinant's permutation formula.
i_a_n
Messages
78
Reaction score
0
The question is: Let $\phi:\mathbb{R}^n\rightarrow\mathbb{R}^n$ be a $C^1$ map and let $y=\phi(x)$ be the change of variables. Show that d$y_1\wedge...\wedge $d$y_n$=(detD$\phi(x)$)$\cdot$d$x_1\wedge...\wedge$d$x_n$.Take a look at here and the answer given by Michael Albanese:
differential geometry - wedge product and change of variables - Mathematics Stack Exchange

My question is can we prove it without using the fact "$\det A = \sum_{\sigma\in S_n}\operatorname{sign}(\sigma)\prod_{i=1}^na_{i \sigma(j)}$"?
 
Physics news on Phys.org
Yes, we can prove it without using the fact "$\det A = \sum_{\sigma\in S_n}\operatorname{sign}(\sigma)\prod_{i=1}^na_{i \sigma(j)}$". The proof is as follows:Let $\phi(x)=(y_1,...,y_n)$. Then, by the chain rule, d$y_i=\sum_{j=1}^{n}\frac{\partial y_i}{\partial x_j}$d$x_j$, for $i=1,2,...,n$. Therefore, d$y_1\wedge ...\wedge $d$y_n=\left(\sum_{j=1}^{n}\frac{\partial y_1}{\partial x_j}$d$x_j\right)\wedge...\wedge\left(\sum_{j=1}^{n}\frac{\partial y_n}{\partial x_j}$d$x_j\right)$. Now, let $D\phi(x)=(a_{ij})_{n\times n}$ be the Jacobian matrix of $\phi$. Then, d$y_1\wedge ...\wedge $d$y_n=\left(\sum_{j=1}^{n}a_{1j}$d$x_j\right)\wedge...\wedge\left(\sum_{j=1}^{n}a_{nj}$d$x_j\right)$. Using the distributive law, we get d$y_1\wedge ...\wedge $d$y_n=\sum_{j_1,...,j_n=1}^{n}\left(a_{1j_1}...a_{nj_n}\right)$d$x_{j_1}\wedge ...\wedge$d$x_{j_n}$. Finally, since the sum is over all permutations of $j_1,...,j_n$, the result follows.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 44 ·
2
Replies
44
Views
6K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K