What Am I Doing Wrong in Calculating the Half-Power Frequency?

  • Thread starter Thread starter perplexabot
  • Start date Start date
  • Tags Tags
    Frequency
Click For Summary
The discussion focuses on calculating the half-power frequency in a series RLC circuit without relying on formulas. The user initially struggles with negative frequency values when attempting to derive the half-power frequency from their transfer function. Key insights reveal that the transfer function should represent the output voltage across the resistor relative to the input voltage. It is clarified that the correct approach involves setting the ratio of output to input voltage equal to 0.707 to find the half-power frequencies. Ultimately, the user acknowledges the importance of using the appropriate transfer function format to achieve accurate results.
perplexabot
Gold Member
Messages
328
Reaction score
5
Hi all. I'm trying to do a circuit problem in my book. The circuit consists of a resistor, capacitor, inductor and a voltage source all in series. The first part of the question says: Find the resonance frequency and half-power frequencies. My book does go on and solve this problem with two different methods using given formulas for series RLC circuits, however, I would like to solve this circuit without formulas (if possible). My problem is calculating the half-power frequency not the resonance frequency.

Given:
R = 2 Ohms
L = 1 mF
C = .4 microH

My approach:
Transfer function: H(s) = R + sL + 1/sC => H(ω) = j(ω*R*C) + (1 - [ω^2 * L * C])

Magnitude of Transfer function: |H(ω)| = √( (ω*R*C)^2 + (1 - [ω^2 * L * C])^2 )
Set Magnitude of Transfer function equal to 1/√2 or set Magnitude of Transfer function squared equal to 1/2:
|H(ω)| = 1/√2 or |H(ω)|^2 = 1/2
Solving for this I get ω1 = -27k or ω2 = -65k

Obviously this is wrong due to the negative ω's. Not only is the sign wrong but also the magnitude. The book achieved the answers: ω1 = 49k or ω2 = 51k

Can anyone please tell me what I'm doing wrong (don't tell me to use formulas please)?
Thank you for your time.

PS: This is NOT a homework problem.
 
Last edited:
Engineering news on Phys.org
Resonance happens when the reactances of the capacitor and inductor are equal.

The Q (or Q factor) of a circuit is equal to the reactance of the inductor at resonance divided by the resistance of the resistor.

So, you may like to look up Q factor on Wikipedia or a textbook to see how to derive the bandwidth.
 
Can you get the halfpower frequency from the transfer function?
 
At DC your power dissipation is 0 (cap is blocking current). At very high freq, power dissipation is 0 (inductor is blocking current). At resonance your power dissipation is
(V^2)/R since the LC is series resonant and behaves like a short, all of the input voltage is across the resistor.

There will be two half power frequencies, one above and one below resonance, where the circuit power dissipation is (V^2)/2R, or the voltage across the resistor is 0.707Vin.

Your transfer function needs to be in the form of output/input.
In this case, since we are finding power consumption, which only occurs in the resistor, our output is the voltage across the resistor. Vr/Vin = R/(R + sL + 1/sc).
Next, set Vr/Vin = 0.707 and solve for freq.
 
perplexabot said:
My approach:
Transfer function: H(s) = R + sL + 1/sC => H(ω) = j(ω*R*C) + (1 - [ω^2 * L * C])
=> H(ω) = 1/(jωC) [/color]([/size] j(ω*R*C) + (1 - [ω^2 * L * C]))[/size]
Magnitude of Transfer function: |H(ω)| = √( (ω*R*C)^2 + (1 - [ω^2 * L * C])^2 )
Obviously can't be right.
 
the_emi_guy said:
At DC your power dissipation is 0 (cap is blocking current). At very high freq, power dissipation is 0 (inductor is blocking current). At resonance your power dissipation is
(V^2)/R since the LC is series resonant and behaves like a short, all of the input voltage is across the resistor.

There will be two half power frequencies, one above and one below resonance, where the circuit power dissipation is (V^2)/2R, or the voltage across the resistor is 0.707Vin.

Your transfer function needs to be in the form of output/input.
In this case, since we are finding power consumption, which only occurs in the resistor, our output is the voltage across the resistor. Vr/Vin = R/(R + sL + 1/sc).
Next, set Vr/Vin = 0.707 and solve for freq.

Thank you. Now I know that in order to solve for the cutoff frequencies my transfer function has to be in the form of Vo/Vi and not in the form of impedence as I had tried. Using Vo/Vi works. Thanks again and sorry for the super late reply.
 
I am trying to understand how transferring electric from the powerplant to my house is more effective using high voltage. The suggested explanation that the current is equal to the power supply divided by the voltage, and hence higher voltage leads to lower current and as a result to a lower power loss on the conductives is very confusing me. I know that the current is determined by the voltage and the resistance, and not by a power capability - which defines a limit to the allowable...

Similar threads

  • · Replies 40 ·
2
Replies
40
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 1 ·
Replies
1
Views
12K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 16 ·
Replies
16
Views
2K