What Angle Causes Particles A and B to Collide?

  • Thread starter Thread starter BeyondBelief96
  • Start date Start date
  • Tags Tags
    Collision Particles
Click For Summary

Homework Help Overview

The problem involves two particles, A and B, where particle A moves with a constant velocity along a horizontal line, while particle B starts from rest and accelerates from the origin. The goal is to determine the angle θ that would result in a collision between the two particles.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss the kinematic equations for both particles and attempt to set up a system of equations to solve for θ. There are considerations of knowns and unknowns for both particles, and attempts to express their positions in terms of time and angle.

Discussion Status

Some participants have shared techniques for eliminating the angle θ from the equations, leading to a quadratic equation in terms of time. Others express uncertainty about their algebra skills and seek clarification on how to proceed after obtaining an expression for time.

Contextual Notes

Participants note the complexity of the algebra involved and the need to manipulate the equations carefully. There is an acknowledgment of the challenge in solving for θ directly from the system of equations.

BeyondBelief96
Messages
14
Reaction score
2

Homework Statement



A particle A moves along the line y = d (30 m) with a constant velocity
upload_2018-8-22_16-24-23.png
(v= 3.0 m/s) directed parallel to the positive x-axis (Fig. 4-40). A second particle B starts at the origin with zero speed and constant acceleration
upload_2018-8-22_16-24-23.png
(a = 0.40 m/s2) at the same instant that particle A passes the y axis. What angle θ between
upload_2018-8-22_16-24-23.png
and the positive y-axis would result in a collision between these two particles?[/B]

Homework Equations



Kinematic Equations

The Attempt at a Solution



So I listed out all knowns and unknowns for both particle A & B as follows:

Particle A: Xi = 0, Xf = ?, Vix = 3 m/s, Vif = 3m/s, a = 0 t = ? and y = 30

Particle B: Xi = 0, Xf = ?, Vix = 0 m/s, Vif = ?, ax = asin(theta), t = ?
Yi = 0, Yf = 30, Viy = 0 m/s, Vif = ?, ay = acos(theta), t = ?

From there I used the kinematic equation d = vit + 1/2at^2 for particle A and B and got the following:

Particle A: x = 3t, y =30
Particle B: x = 1/2asin(theta)t^2, y = 1/2acos(theta)t^2

I set each of the equations equal to each other and tried to solve the system of equations for theta as follows:

3t = 1/2asin(theta)t^2 (Eq1)

30 = 1/2acos(theta)t^2 (Eq2)

3 = 1/2asin(theta)t so t = 6/asin(theta)

So I plugged t into Eq2:

30 = 1/2acos(theta)[6/asin(theta)]^2

from here I am at a loss on how to solve for theta. To be honest, my algebra solving skills arent super spectacular, which is a bit sad haha. I was able to simplify this as:

30 = 1/2acos(theta)[36/a^2sin^2(theta)] == 5/3 = cot(theta)/asin(theta) ...aaaaaand this is where I am lost.
[/B]
 

Attachments

  • upload_2018-8-22_16-24-23.png
    upload_2018-8-22_16-24-23.png
    236 bytes · Views: 1,423
  • upload_2018-8-22_16-24-23.png
    upload_2018-8-22_16-24-23.png
    263 bytes · Views: 1,359
  • upload_2018-8-22_16-24-23.png
    upload_2018-8-22_16-24-23.png
    246 bytes · Views: 1,330
  • download.png
    download.png
    1.5 KB · Views: 454
Physics news on Phys.org
BrandonBerisford said:

Homework Statement



A particle A moves along the line y = d (30 m) with a constant velocity View attachment 229683 (v= 3.0 m/s) directed parallel to the positive x-axis (Fig. 4-40). A second particle B starts at the origin with zero speed and constant acceleration View attachment 229681 (a = 0.40 m/s2) at the same instant that particle A passes the y axis. What angle θ between View attachment 229682 and the positive y-axis would result in a collision between these two particles?[/B]

Homework Equations



Kinematic Equations

The Attempt at a Solution



So I listed out all knowns and unknowns for both particle A & B as follows:

Particle A: Xi = 0, Xf = ?, Vix = 3 m/s, Vif = 3m/s, a = 0 t = ? and y = 30

Particle B: Xi = 0, Xf = ?, Vix = 0 m/s, Vif = ?, ax = asin(theta), t = ?
Yi = 0, Yf = 30, Viy = 0 m/s, Vif = ?, ay = acos(theta), t = ?

From there I used the kinematic equation d = vit + 1/2at^2 for particle A and B and got the following:

Particle A: x = 3t, y =30
Particle B: x = 1/2asin(theta)t^2, y = 1/2acos(theta)t^2

I set each of the equations equal to each other and tried to solve the system of equations for theta as follows:

3t = 1/2asin(theta)t^2 (Eq1)

30 = 1/2acos(theta)t^2 (Eq2)

3 = 1/2asin(theta)t so t = 6/asin(theta)

So I plugged t into Eq2:

30 = 1/2acos(theta)[6/asin(theta)]^2

from here I am at a loss on how to solve for theta. To be honest, my algebra solving skills arent super spectacular, which is a bit sad haha. I was able to simplify this as:

30 = 1/2acos(theta)[36/a^2sin^2(theta)] == 5/3 = cot(theta)/asin(theta) ...aaaaaand this is where I am lost.
[/B]
Here is a technique that you can use on a lot problems like this to eliminate angle ##\theta##.

##3t = \frac 1 2 a\,t^2 \sin(\theta)##
##30 = \frac 1 2 a\,t^2 \cos(\theta)##

##9t ^2= \frac 1 4 a^2t^4 \sin^2(\theta)##
##900 = \frac 1 4 a^2t^4 \cos^2(\theta)##
_____________________
##9t ^2 + 900 = \frac 1 4 a^2t^4##

In the last step, I just added the two equations. Now you have a quadratic equation to solve for ##t^2##.
 
tnich said:
Here is a technique that you can use on a lot problems like this to eliminate angle ##\theta##.

##3t = \frac 1 2 a\,t^2 \sin(\theta)##
##30 = \frac 1 2 a\,t^2 \cos(\theta)##

##9t ^2= \frac 1 4 a^2t^4 \sin^2(\theta)##
##900 = \frac 1 4 a^2t^4 \cos^2(\theta)##
_____________________
##9t ^2 + 900 = \frac 1 4 a^2t^4##

In the last step, I just added the two equations. Now you have a quadratic equation to solve for ##t^2##.

NEW
oh okay, that makes sense! So once I've solved for t^2 just square root it for t, and then plug it into one of my original equations then solve for theta?
 
BrandonBerisford said:
NEW
oh okay, that makes sense! So once I've solved for t^2 just square root it for t, and then plug it into one of my original equations then solve for theta?
Right.
 

Similar threads

Replies
3
Views
1K
Replies
62
Views
7K
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
10
Views
2K
Replies
30
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K