What Angle Causes Particles A and B to Collide?

  • Thread starter Thread starter BeyondBelief96
  • Start date Start date
  • Tags Tags
    Collision Particles
AI Thread Summary
The discussion revolves around determining the angle θ that would cause two particles, A and B, to collide. Particle A moves at a constant velocity along a horizontal line, while particle B starts from rest and accelerates from the origin. The kinematic equations for both particles are established, leading to a system of equations that relate their positions over time. A suggested method involves eliminating θ by combining the equations, resulting in a quadratic equation for time t. Once t is solved, it can be substituted back to find the angle θ, facilitating the collision analysis.
BeyondBelief96
Messages
14
Reaction score
2

Homework Statement



A particle A moves along the line y = d (30 m) with a constant velocity
upload_2018-8-22_16-24-23.png
(v= 3.0 m/s) directed parallel to the positive x-axis (Fig. 4-40). A second particle B starts at the origin with zero speed and constant acceleration
upload_2018-8-22_16-24-23.png
(a = 0.40 m/s2) at the same instant that particle A passes the y axis. What angle θ between
upload_2018-8-22_16-24-23.png
and the positive y-axis would result in a collision between these two particles?[/B]

Homework Equations



Kinematic Equations

The Attempt at a Solution



So I listed out all knowns and unknowns for both particle A & B as follows:

Particle A: Xi = 0, Xf = ?, Vix = 3 m/s, Vif = 3m/s, a = 0 t = ? and y = 30

Particle B: Xi = 0, Xf = ?, Vix = 0 m/s, Vif = ?, ax = asin(theta), t = ?
Yi = 0, Yf = 30, Viy = 0 m/s, Vif = ?, ay = acos(theta), t = ?

From there I used the kinematic equation d = vit + 1/2at^2 for particle A and B and got the following:

Particle A: x = 3t, y =30
Particle B: x = 1/2asin(theta)t^2, y = 1/2acos(theta)t^2

I set each of the equations equal to each other and tried to solve the system of equations for theta as follows:

3t = 1/2asin(theta)t^2 (Eq1)

30 = 1/2acos(theta)t^2 (Eq2)

3 = 1/2asin(theta)t so t = 6/asin(theta)

So I plugged t into Eq2:

30 = 1/2acos(theta)[6/asin(theta)]^2

from here I am at a loss on how to solve for theta. To be honest, my algebra solving skills arent super spectacular, which is a bit sad haha. I was able to simplify this as:

30 = 1/2acos(theta)[36/a^2sin^2(theta)] == 5/3 = cot(theta)/asin(theta) ...aaaaaand this is where I am lost.
[/B]
 

Attachments

  • upload_2018-8-22_16-24-23.png
    upload_2018-8-22_16-24-23.png
    236 bytes · Views: 1,381
  • upload_2018-8-22_16-24-23.png
    upload_2018-8-22_16-24-23.png
    263 bytes · Views: 1,321
  • upload_2018-8-22_16-24-23.png
    upload_2018-8-22_16-24-23.png
    246 bytes · Views: 1,288
  • download.png
    download.png
    1.5 KB · Views: 438
Physics news on Phys.org
BrandonBerisford said:

Homework Statement



A particle A moves along the line y = d (30 m) with a constant velocity View attachment 229683 (v= 3.0 m/s) directed parallel to the positive x-axis (Fig. 4-40). A second particle B starts at the origin with zero speed and constant acceleration View attachment 229681 (a = 0.40 m/s2) at the same instant that particle A passes the y axis. What angle θ between View attachment 229682 and the positive y-axis would result in a collision between these two particles?[/B]

Homework Equations



Kinematic Equations

The Attempt at a Solution



So I listed out all knowns and unknowns for both particle A & B as follows:

Particle A: Xi = 0, Xf = ?, Vix = 3 m/s, Vif = 3m/s, a = 0 t = ? and y = 30

Particle B: Xi = 0, Xf = ?, Vix = 0 m/s, Vif = ?, ax = asin(theta), t = ?
Yi = 0, Yf = 30, Viy = 0 m/s, Vif = ?, ay = acos(theta), t = ?

From there I used the kinematic equation d = vit + 1/2at^2 for particle A and B and got the following:

Particle A: x = 3t, y =30
Particle B: x = 1/2asin(theta)t^2, y = 1/2acos(theta)t^2

I set each of the equations equal to each other and tried to solve the system of equations for theta as follows:

3t = 1/2asin(theta)t^2 (Eq1)

30 = 1/2acos(theta)t^2 (Eq2)

3 = 1/2asin(theta)t so t = 6/asin(theta)

So I plugged t into Eq2:

30 = 1/2acos(theta)[6/asin(theta)]^2

from here I am at a loss on how to solve for theta. To be honest, my algebra solving skills arent super spectacular, which is a bit sad haha. I was able to simplify this as:

30 = 1/2acos(theta)[36/a^2sin^2(theta)] == 5/3 = cot(theta)/asin(theta) ...aaaaaand this is where I am lost.
[/B]
Here is a technique that you can use on a lot problems like this to eliminate angle ##\theta##.

##3t = \frac 1 2 a\,t^2 \sin(\theta)##
##30 = \frac 1 2 a\,t^2 \cos(\theta)##

##9t ^2= \frac 1 4 a^2t^4 \sin^2(\theta)##
##900 = \frac 1 4 a^2t^4 \cos^2(\theta)##
_____________________
##9t ^2 + 900 = \frac 1 4 a^2t^4##

In the last step, I just added the two equations. Now you have a quadratic equation to solve for ##t^2##.
 
tnich said:
Here is a technique that you can use on a lot problems like this to eliminate angle ##\theta##.

##3t = \frac 1 2 a\,t^2 \sin(\theta)##
##30 = \frac 1 2 a\,t^2 \cos(\theta)##

##9t ^2= \frac 1 4 a^2t^4 \sin^2(\theta)##
##900 = \frac 1 4 a^2t^4 \cos^2(\theta)##
_____________________
##9t ^2 + 900 = \frac 1 4 a^2t^4##

In the last step, I just added the two equations. Now you have a quadratic equation to solve for ##t^2##.

NEW
oh okay, that makes sense! So once I've solved for t^2 just square root it for t, and then plug it into one of my original equations then solve for theta?
 
BrandonBerisford said:
NEW
oh okay, that makes sense! So once I've solved for t^2 just square root it for t, and then plug it into one of my original equations then solve for theta?
Right.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top