MHB What are the points of discontinuity for the function $f(x,y)$?

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Discontinuity
Dustinsfl
Messages
2,217
Reaction score
5
Points of discontinuity
$f(x,y) = \begin{cases}\frac{\sin x - \sin y}{\tan x - \tan y}, & \text{if } \tan x\neq\tan y\\
\cos^3 x, & \text{if } \tan x = \tan y\end{cases}$
Not sure what to do with this one.
 
Physics news on Phys.org
dwsmith said:
Points of discontinuity
$f(x,y) = \begin{cases}\frac{\sin x - \sin y}{\tan x - \tan y}, & \text{if } \tan x\neq\tan y\\
\cos^3 x, & \text{if } \tan x = \tan y\end{cases}$
Not sure what to do with this one.

The denominator vanishes if $\displaystyle y = x + n\ \pi$, n being an integer. The numerator vanishes if $\displaystyle y= x + 2\ k\ \pi$, k being and integer, and in these points f(*,*) is continous, not if $\displaystyle y = x + (2\ k +1)\ \pi$, k being an integer, and in these points f(*,*) is discontinous...

Kind regards

$\chi$ $\sigma$
 

Similar threads

Replies
20
Views
4K
Replies
8
Views
253
Replies
8
Views
3K
Replies
6
Views
2K
Replies
3
Views
2K
Replies
17
Views
2K
Replies
40
Views
4K
Replies
7
Views
1K
Back
Top