What Are the Roots of a Given Quartic Polynomial?

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Polynomials
Click For Summary
SUMMARY

The discussion centers on solving the quartic polynomial equation ##x^4+x^3+Ax^2+4x-2=0##, given that the roots are ##1/Φ, 1/Ψ, 1/ξ, 1/φ##. Participants suggest substituting the roots with variables ##a, b, c, d## and derive equations based on Vieta's formulas. Key equations include ##abcd = -2## and ##a + b + c + d = 2##. The consensus is that while a numeric value for ##A## can be derived, it requires specific values for the roots, which are not provided in the discussion.

PREREQUISITES
  • Understanding of quartic polynomials and their properties
  • Familiarity with Vieta's formulas for polynomial roots
  • Basic algebraic manipulation skills
  • Knowledge of complex numbers and their operations
NEXT STEPS
  • Study Vieta's formulas in detail for polynomial equations
  • Learn about the methods for solving quartic equations
  • Research the implications of complex roots in polynomial equations
  • Explore numerical methods for approximating roots of polynomials
USEFUL FOR

Mathematics students, educators, and anyone interested in polynomial equations and their solutions, particularly in the context of higher-degree polynomials.

  • #61
kuruman said:
OK, suppose as you say ##A=-1##. Then the equation becomes
##x^4+x^3-x^2+4x-2=0##
Now you claim that ##x_1=-2## is a root. This means that if I replace ##x## with ##(-2)## in the equation, the left hand side must evaluate to zero. Let's see,
##(-2)^4+(-2)^3-(-2)^2+4(-2)-2=16-8-4-2=16-14=2.## Therefore your claim that ##x_1=-2## is a root is incorrect. The point here is that once you pick ##A=-1## all 4 roots are specified. I gave you these roots in post #46. One of them is ##x_1=−2.32708.## Let's see how that works with ##A=-1.##
##(−2.32708)^4+(−2.32708)^3-(−2.32708)^2+4(−2.32708)-2=29.3254-12.6018-5.4153-9.30832-2=-0.00002\approx 0.## Thus, to within round-off accuracy, ##x_1=−2.32708## is a root for ##A=-1.##

The point here is that once you pick ##A##, all 4 roots are uniquely specified. Conversely, once you pick one root, ##A## and the three remaining roots are uniquely specified.

To get root ##-5.50427##, first I picked a numerical value for ##A##. As mentioned above, once I did that all four roots were uniquely specified. I obtained all four by using Mathematica to solve the equation and posted them in #32. To see how all this helps you solve the original problem, please do what I asked in post #53 and what you said you do in post #54 but have not done yet: Substitute one root ##x_1=-5.50427## in the equation leaving ##A## alone and see what you get. For good measure, repeat with another root, ##x_2=4.34094## for the same choice of ##A## and see what you get this time. Then we'll talk again.
I understand your point, very clear, remember you are assigning values for either ##A## or a root value. My question is, in that problem "are we able to solve without assigning the values like the way you have done?"The approach of assigning values implies that ##A## may take any value dependent on the roots. What exactly do you mean by saying that i am half way to getting the solution?Were you envisaging assigning of values?If this is the case, how would this help in solving that problem?
 
Physics news on Phys.org
  • #62
chwala said:
I understand your point, very clear, remember you are assigning values for either ##A## or a root value. My question is, in that problem "are we able to solve without assigning the values like the way you have done?"The approach of assigning values implies that ##A## may take any value dependent on the roots.
Good. You came to that understanding at post #50. This understanding is crucial to answering the question.
chwala said:
What exactly do you mean by saying that i am half way to getting the solution?
I mean that you reached the crucial understanding I mentioned above. I believe that without it you would not be able to each the answer and you would be going around in circles producing more and more equations.
chwala said:
Were you envisaging assigning of values?
Assigning values to what?
chwala said:
If this is the case, how would this help in solving that problem?
The problem gave you the roots ##1/\Theta,~1/\Psi,~1/\phi,## and ##~1/\xi~##. If you do what I asked you in post #60, namely
kuruman said:
"Substitute one root ##x_1=-5.50427## in the equation leaving ##A## alone and see what you get. For good measure, repeat with another root, ##x_2=4.34094## for the same choice of ##A## and see what you get this time"
then you will see for yourself how to get ##A## for two numerical values of the roots. From that, you should be able to deduce how to get ##A## for any set of roots such as ##1/\Theta,~1/\Psi,~1/\phi,## and ##~1/\xi~##.

If you do not do what I asked you in post #60, then I will stop posting on this thread until you do.
 
  • #63
Thank you for your insight.
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
5K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
19
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K