MHB What Do the Elements of $\mathbb{Z}_2 \times \mathbb{Z}$ Look Like?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Elements
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

To show that in the additive group $\mathbb{Z}_2\times\mathbb{Z}$ there are non-zero elements $A,B$ of infinite order such that $A+B$ has finite order, we have to find such $A$ and $B$, right? (Wondering)

How do the elements of $\mathbb{Z}_2\times\mathbb{Z}$ look like? (Wondering)
 
Physics news on Phys.org
The elements of $\mathbb{Z}_2\times\mathbb{Z}$ are of the form $(x,y)$ where $x\in \mathbb{Z}_2$ and $y\in \mathbb{Z}$, right? (Wondering)

And the order of such an element is $n$ for which $(nx,ny)=(0,0)$, right?

For $A=(1,k)$ and $B=(0,-k)$ for $k\in \mathbb{Z}_{>0}$, we have that $A+B=(1,0)$, right?

$A$ and $B$ have infinite order, since the second coordinate is never equal to $0$ for $k>0$, and $A+B$ has finite order, and specifically the order is $2$, since $2(1,0)=(2,0)=(0,0)$.

Is this correct? (Wondering)
 
Yep. All correct. (Happy)
 
Great! Thank you! (Sun)
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top