MHB What Do the Elements of $\mathbb{Z}_2 \times \mathbb{Z}$ Look Like?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Elements
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

To show that in the additive group $\mathbb{Z}_2\times\mathbb{Z}$ there are non-zero elements $A,B$ of infinite order such that $A+B$ has finite order, we have to find such $A$ and $B$, right? (Wondering)

How do the elements of $\mathbb{Z}_2\times\mathbb{Z}$ look like? (Wondering)
 
Physics news on Phys.org
The elements of $\mathbb{Z}_2\times\mathbb{Z}$ are of the form $(x,y)$ where $x\in \mathbb{Z}_2$ and $y\in \mathbb{Z}$, right? (Wondering)

And the order of such an element is $n$ for which $(nx,ny)=(0,0)$, right?

For $A=(1,k)$ and $B=(0,-k)$ for $k\in \mathbb{Z}_{>0}$, we have that $A+B=(1,0)$, right?

$A$ and $B$ have infinite order, since the second coordinate is never equal to $0$ for $k>0$, and $A+B$ has finite order, and specifically the order is $2$, since $2(1,0)=(2,0)=(0,0)$.

Is this correct? (Wondering)
 
Yep. All correct. (Happy)
 
Great! Thank you! (Sun)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top