I What does ".... is zero to order ...." mean?

AI Thread Summary
The phrase "zero to order e^2" in the context of contour integrals indicates that the integral's value can be expressed as a power series where the coefficients for the first two terms are zero. This means that the integral behaves like a function that starts from the third order term and does not contribute any value up to the second order. There is some debate about whether the second-order coefficient can be non-zero, but the consensus leans toward it being zero for the expression to hold true. The terminology "zero to second order" suggests that the approximation remains zero up to that order. Overall, the discussion clarifies the meaning of this mathematical expression and its implications in power series expansion.
Tomtam
I saw the sentence " So the contour integral of an analytic function f(z) around a tiny square of size e is zero to order e^2. ". I want to know what " be zero to order " means exactly.
 
Mathematics news on Phys.org
Tomtam said:
I saw the sentence " So the contour integral of an analytic function f(z) around a tiny square of size e is zero to order e^2. ". I want to know what " be zero to order " means exactly.
It means that if you were to write the value of the integral as a power series function of e, a0+a1e+a2e2+a3e3+... then the a0, a1 and a2 coefficients would be zero.
 
  • Like
Likes Tomtam
I think that a2 can be non-zero.
 
FactChecker said:
I think that a2 can be non-zero.
Perhaps, but I don't think so. Expressing a function to second order means taking the expansion terms up to and including the x2 term. If it is "zero to second order" that should mean the second order approximation is still zero.
 
  • Like
Likes FactChecker
haruspex said:
Perhaps, but I don't think so. Expressing a function to second order means taking the expansion terms up to and including the x2 term. If it is "zero to second order" that should mean the second order approximation is still zero.
I stand corrected. I think you are probably right. I was thinking of a second order zero, but the phrase "zero to second order" does sound more like your definition. I don't think I have ever heard that terminology formally defined or used.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top