What does cross section area mean when dealing with stress/strain?

Click For Summary
SUMMARY

The term "cross section area" in the context of stress and strain refers to the area of a plane perpendicular to the applied force on an object. For a circular wire, the cross section area is calculated using the formula A = πR² or A = πD²/4, where R is the radius and D is the diameter. In tensile stress calculations, the formula σ = F/A is used, where σ is the tensile stress, F is the tensile load in Newtons, and A is the cross section area in square meters. Understanding this concept is crucial for solving elasticity problems, such as determining the minimum diameter of a wire under tensile load.

PREREQUISITES
  • Understanding of tensile stress and strain concepts
  • Familiarity with basic geometry, specifically the area of circles
  • Knowledge of the modulus of elasticity in materials science
  • Ability to manipulate and solve algebraic equations
NEXT STEPS
  • Study the relationship between tensile stress and strain using the Young's modulus
  • Learn how to calculate elongation in materials under tensile loads
  • Explore the application of cross section area in different material shapes beyond circular wires
  • Investigate the effects of different materials on tensile strength and elasticity
USEFUL FOR

Students in physics or engineering, materials scientists, and professionals involved in structural design or analysis will benefit from this discussion on cross section area and its implications in stress and strain calculations.

Jay520
What does "cross section area" mean when dealing with stress/strain?

Homework Statement



For clarification, here is an example problem:

A circular steel wire 2 m long must stretch no more than 0.25 cm when a tensile force of 400 N is applied to each end of the wire. What minimum diameter is required for the wire?

Relevant equations

FL = YA(ΔL)Apparently, the cross section area for this object is simply pi*r^2 (as for any circle). Can someone tell me exactly what the cross section area is supposed to refer to? I thought it was the area of the plane of the object perpendicular to the applied force, but apparently I'm wrong or not understanding something properly.
 
Last edited by a moderator:
Physics news on Phys.org
Why do you feel that you are wrong or not understanding something properly?

Chet
 
I don't know what the definition of "cross section area" is. At least not well enough to apply it to the context of elasticity physics problems.
 
When you put the wire in tension, the tensile stress is calculated using the circular cross-section of the wire.
The tensile stress σ = F/A, where F is the tensile load (Newtons) and A is the cross section area (m^2), and the stress σ has units of pascals (N/m^2)

For a circular wire, A = πR^{2} or πD^{2}/4, where R (radius) or D (diameter) of the wire are measured in meters.

The elongation of an object undergoing a tensile load is

δ = FL/AE

where

F = tensile load (Newtons)
L = unloaded length of the object (meters)
A = cross sectional area of the object (m^2)
E = modulus of elasticity of the material (Pa)

The cross section just refers to the shape of the loaded object which results from its intersection with a plane oriented normal to the applied load.
 
For a long cylindrical body (not necessary a circular cylinder), the cross sectional area is obtained by cutting the cylinder with a knife perpendicular to its axis and looking in at the exposed area. The area that is exposed is the cross sectional area of the cylinder.

Chet
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
1K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K